ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Carbohydrates and Dietary Fiber Components of Yellow- and Brown-Seeded Canola

Cite this: J. Agric. Food Chem. 1994, 42, 3, 704–707
Publication Date (Print):March 1, 1994
https://doi.org/10.1021/jf00039a020
    ACS Legacy Archive

    Article Views

    550

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 62 publications.

    1. Katerina Theodoridou, Xuewei Zhang, Sally Vail, and Peiqiang Yu . Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines. Journal of Agricultural and Food Chemistry 2015, 63 (22) , 5476-5484. https://doi.org/10.1021/acs.jafc.5b01577
    2. Katerina Theodoridou and Peiqiang Yu . Metabolic Characteristics of the Proteins in Yellow-Seeded and Brown-Seeded Canola Meal and Presscake in Dairy Cattle: Comparison of Three Systems (PDI, DVE, and NRC) in Nutrient Supply and Feed Milk Value (FMV). Journal of Agricultural and Food Chemistry 2013, 61 (11) , 2820-2830. https://doi.org/10.1021/jf305171z
    3. Bogdan A. Slominski, Wei Jia, Anna Rogiewicz, Charles M. Nyachoti, and Dave Hickling . Low-Fiber Canola. Part 1. Chemical and Nutritive Composition of the Meal. Journal of Agricultural and Food Chemistry 2012, 60 (50) , 12225-12230. https://doi.org/10.1021/jf302117x
    4. Benjamin Wittkop, Rod J. Snowdon, and Wolfgang Friedt . New NIRS Calibrations for Fiber Fractions Reveal Broad Genetic Variation in Brassica napus Seed Quality. Journal of Agricultural and Food Chemistry 2012, 60 (9) , 2248-2256. https://doi.org/10.1021/jf204936f
    5. Yanxing Niu, Anna Rogiewicz, Lan Shi, Rob Patterson, Bogdan A. Slominski. The effect of enzymatically-modified canola meal on growth performance, nutrient utilization, and gut health and function of broiler chickens. Animal Feed Science and Technology 2023, 305 , 115760. https://doi.org/10.1016/j.anifeedsci.2023.115760
    6. Yanxing Niu, Anna Rogiewicz, Rob Patterson, Bogdan A Slominski. Enhancing the nutritive value of canola meal for broiler chickens through enzymatic modifications. Journal of Animal Science 2023, 101 https://doi.org/10.1093/jas/skad233
    7. Garrin L Shipman, Jorge Y Perez-Palencia, Anna Rogiewicz, Rob. Patterson, Crystal. L Levesque. Evaluation of multienzyme supplementation and fiber levels on nutrient and energy digestibility of diets fed to gestating sows and growing pigs. Journal of Animal Science 2023, 101 https://doi.org/10.1093/jas/skad375
    8. Yanxing Niu, Anna Rogiewicz, Lan Shi, Rob Patterson, Bogdan A. Slominski. The effect of multi-carbohydrase preparations on non-starch polysaccharides degradation and growth performance of broiler chickens fed diets containing high inclusion level of canola meal. Animal Feed Science and Technology 2022, 293 , 115450. https://doi.org/10.1016/j.anifeedsci.2022.115450
    9. C. Lannuzel, A. Smith, A.L. Mary, E.A. Della Pia, M.A. Kabel, S. de Vries. Improving fiber utilization from rapeseed and sunflower seed meals to substitute soybean meal in pig and chicken diets: A review. Animal Feed Science and Technology 2022, 285 , 115213. https://doi.org/10.1016/j.anifeedsci.2022.115213
    10. Gurpreet Kaur, Sanjula Sharma, Sapna Langyan, Jasmeet Kaur, Pranjal Yadava, S. S. Banga. Advanced Breeding for Oil and Oil Cake Quality in Brassica juncea. 2022, 413-438. https://doi.org/10.1007/978-3-030-91507-0_23
    11. Sanjula Sharma, Manju Bala, Gurpreet Kaur, Saad Tayyab, Shevin Rizal Feroz. Chemical Composition of Oil and Cake of Brassica juncea: Implications on Human and Animal Health. 2022, 29-55. https://doi.org/10.1007/978-3-030-91507-0_3
    12. Elijah G Kiarie, Samantha Steelman, Marco Martinez,, Kimberly Livingston. Significance of single β-mannanase supplementation on performance and energy utilization in broiler chickens, laying hens, turkeys, sows, and nursery-finish pigs: a meta-analysis and systematic review. Translational Animal Science 2021, 5 (4) https://doi.org/10.1093/tas/txab160
    13. Gustavo A Mejicanos, Gemma González-Ortiz, Charles Martin Nyachoti. Effect of dietary supplementation of xylanase in a wheat-based diet containing canola meal on growth performance, nutrient digestibility, organ weight, and short-chain fatty acid concentration in digesta when fed to weaned pigs. Journal of Animal Science 2020, 98 (3) https://doi.org/10.1093/jas/skaa064
    14. D. R. Malaviya, A. K. Roy, P. Kaushal, A. Yadav, D. K. Pandey. Complementary gene interaction and xenia effect controls the seed coat colour in interspecific cross between Trifolium alexandrinum and T. apertum. Genetica 2019, 147 (2) , 197-203. https://doi.org/10.1007/s10709-019-00063-5
    15. Juan Sanchez, Aizwarya Thanabalan, Tanka Khanal, Rob Patterson, Bogdan A. Slominski, Elijah Kiarie. Growth performance, gastrointestinal weight, microbial metabolites and apparent retention of components in broiler chickens fed up to 11% rice bran in a corn-soybean meal diet without or with a multi-enzyme supplement. Animal Nutrition 2019, 5 (1) , 41-48. https://doi.org/10.1016/j.aninu.2018.12.001
    16. Yanhong Liu, Maryane S F Oliveira, Hans H Stein. Canola meal produced from high-protein or conventional varieties of canola seeds may substitute soybean meal in diets for gestating and lactating sows without compromising sow or litter productivity. Journal of Animal Science 2018, 93 https://doi.org/10.1093/jas/sky356
    17. M. Rad-Spice, A. Rogiewicz, J. Jankowski, B.A. Slominski. Yellow-seeded B. napus and B. juncea canola. Part 1. Nutritive value of the meal for broiler chickens. Animal Feed Science and Technology 2018, 240 , 66-77. https://doi.org/10.1016/j.anifeedsci.2018.03.017
    18. Gustavo A Mejicanos, Jong Woong Kim, C Martin Nyachoti. Tail-end dehulling of canola meal improves apparent and standardized total tract digestibility of phosphorus when fed to growing pigs. Journal of Animal Science 2018, 96 (4) , 1430-1440. https://doi.org/10.1093/jas/sky040
    19. Samira Mafi Moghaddam, Mark A. Brick, Dimas Echeverria, Henry J. Thompson, Leslie A. Brick, Rian Lee, Sujan Mamidi, Phillip E. McClean. Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean. The Plant Genome 2018, 11 (1) https://doi.org/10.3835/plantgenome2017.08.0074
    20. D. I. Adewole, A. Rogiewicz, B. Dyck, C. M. Nyachoti, B. A. Slominski. Standardized ileal digestible amino acid contents of canola meal from Canadian crushing plants for growing pigs1. Journal of Animal Science 2017, 95 (6) , 2670-2679. https://doi.org/10.2527/jas.2017.1372
    21. M. Radfar, A. Rogiewicz, B.A. Slominski. Chemical composition and nutritive value of canola-quality Brassica juncea meal for poultry and the effect of enzyme supplementation. Animal Feed Science and Technology 2017, 225 , 97-108. https://doi.org/10.1016/j.anifeedsci.2017.01.007
    22. Biswapriya Biswavas Misra, . Cataloging the Brassica napus seed metabolome. Cogent Food & Agriculture 2016, 2 (1) https://doi.org/10.1080/23311932.2016.1254420
    23. D.I. Adewole, A. Rogiewicz, B. Dyck, B.A. Slominski. Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Animal Feed Science and Technology 2016, 222 , 17-30. https://doi.org/10.1016/j.anifeedsci.2016.09.012
    24. Y. Wang, H. Rong, T. Xie, J. Jiang, J. Wu, Y. Wang. Comparison of DNA methylation in the developing seeds of yellow- and black-seeded Brassica napus through MSAP analysis. Euphytica 2016, 209 (1) , 157-169. https://doi.org/10.1007/s10681-016-1654-x
    25. B. Cotten, D. Ragland, J. E. Thomson, O. Adeola. Amino acid digestibility of plant protein feed ingredients for growing pigs. Journal of Animal Science 2016, 94 (3) , 1073-1082. https://doi.org/10.2527/jas.2015-9662
    26. Mukhlesur Rahman, Monika Michalak de Jiménez. Designer Oil Crops. 2016, 361-376. https://doi.org/10.1016/B978-0-12-801309-0.00015-X
    27. Jinjin Jiang, Yue Wang, Tao Xie, Hao Rong, Aimin Li, Yujie Fang, Youping Wang. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica napus–Sinapis alba Hybrids. Molecules 2015, 20 (12) , 21204-21213. https://doi.org/10.3390/molecules201219761
    28. C. K. Parr, Y. Liu, C. M. Parsons, H. H. Stein. Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs. Journal of Animal Science 2015, 93 (5) , 2165-2173. https://doi.org/10.2527/jas.2014-8439
    29. Y. Liu, M. Song, T. Maison, H. H. Stein. Effects of protein concentration and heat treatment on concentration of digestible and metabolizable energy and on amino acid digestibility in four sources of canola meal fed to growing pigs. Journal of Animal Science 2014, 92 (10) , 4466-4477. https://doi.org/10.2527/jas.2013-7433
    30. N. Sanjayan, J. M. Heo, C. M. Nyachoti. Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from Brassica napus black and Brassica juncea yellow1. Journal of Animal Science 2014, 92 (9) , 3895-3905. https://doi.org/10.2527/jas.2013-7215
    31. S. de Vries, A.M. Pustjens, M.A. Kabel, R.P. Kwakkel, W.J.J. Gerrits. Effects of processing technologies and pectolytic enzymes on degradability of nonstarch polysaccharides from rapeseed meal in broilers. Poultry Science 2014, 93 (3) , 589-598. https://doi.org/10.3382/ps.2013-03476
    32. Katerina Theodoridou, Sally Vail, Peiqiang Yu. Explore protein molecular structure in endosperm tissues in newly developed black and yellow type canola seeds by using synchrotron-based Fourier transform infrared microspectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 120 , 421-427. https://doi.org/10.1016/j.saa.2013.10.034
    33. U. Messerschmidt, M. Eklund, N. Sauer, V.T.S. Rist, P. Rosenfelder, H.K. Spindler, J.K. Htoo, F. Schöne, R. Mosenthin. Chemical composition and standardized ileal amino acid digestibility in rapeseed meals sourced from German oil mills for growing pigs. Animal Feed Science and Technology 2014, 187 , 68-76. https://doi.org/10.1016/j.anifeedsci.2013.10.009
    34. Jinjin Jiang, Yanlin Shao, Aimin Li, Yongtai Zhang, Cunxu Wei, Youping Wang. FT‐IR and NMR study of seed coat dissected from different colored progenies of Brassica napus–Sinapis alba hybrids. Journal of the Science of Food and Agriculture 2013, 93 (8) , 1898-1902. https://doi.org/10.1002/jsfa.5986
    35. Katerina Theodoridou, Peiqiang Yu. Effect of processing conditions on the nutritive value of canola meal and presscake. Comparison of the yellow and brown‐seeded canola meal with the brown‐seeded canola presscake. Journal of the Science of Food and Agriculture 2013, 93 (8) , 1986-1995. https://doi.org/10.1002/jsfa.6004
    36. Manju Bala, Maharaj Singh. Non destructive estimation of total phenol and crude fiber content in intact seeds of rapeseed–mustard using FTNIR. Industrial Crops and Products 2013, 42 , 357-362. https://doi.org/10.1016/j.indcrop.2012.06.014
    37. 彦林 邵. Study on Anti-Nutritional Compounds in Seeds of Brassica napus. Botanical Research 2013, 02 (02) , 56-61. https://doi.org/10.12677/BR.2013.22010
    38. M. A. Trindade Neto, F. O. Opepaju, B. A. Slominski, C. M. Nyachoti. Ileal amino acid digestibility in canola meals from yellow- and black-seeded Brassica napus and Brassica juncea fed to growing pigs1. Journal of Animal Science 2012, 90 (10) , 3477-3484. https://doi.org/10.2527/jas.2011-4773
    39. Saman Abeysekara, Samadi, Peiqiang Yu. Response and sensitivity of lipid related molecular structure to wet and dry heating in Canola tissue. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012, 90 , 63-71. https://doi.org/10.1016/j.saa.2011.12.045
    40. J. Jiang, J. Wang, A. Li, Y. Zhang, V. Sokolov, Y. Wang. Proteomic differences in seed filling between yellow-seeded progeny of Brassica napus-Sinapis alba (Brassicaceae) and black-seeded parent B. napus. Russian Journal of Genetics 2012, 48 (4) , 396-403. https://doi.org/10.1134/S1022795412020081
    41. Aimin Li, Jinjin Jiang, Yongtai Zhang, Rod J. Snowdon, Guohua Liang, Youping Wang. Molecular and cytological characterization of introgression lines in yellow seed derived from somatic hybrids between Brassica napus and Sinapis alba. Molecular Breeding 2012, 29 (1) , 209-219. https://doi.org/10.1007/s11032-010-9540-z
    42. Amine Abbadi, Gunhild Leckband. Rapeseed breeding for oil content, quality, and sustainability. European Journal of Lipid Science and Technology 2011, 113 (10) , 1198-1206. https://doi.org/10.1002/ejlt.201100063
    43. Janitha P. D. Wanasundara. Proteins of Brassicaceae Oilseeds and their Potential as a Plant Protein Source. Critical Reviews in Food Science and Nutrition 2011, 51 (7) , 635-677. https://doi.org/10.1080/10408391003749942
    44. Mukhlesur Rahman, Peter McVetty. A review of Brassica seed color. Canadian Journal of Plant Science 2011, 91 (3) , 437-446. https://doi.org/10.4141/cjps10124
    45. Véronique J. Barthet, James K. Daun. Seed Morphology, Composition, and Quality. 2011, 119-162. https://doi.org/10.1016/B978-0-9818936-5-5.50009-7
    46. B. Wittkop, R. J. Snowdon, W. Friedt. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170 (1-2) https://doi.org/10.1007/s10681-009-9940-5
    47. Leonid Akhov, Paula Ashe, Yifang Tan, Raju Datla, Gopalan Selvaraj. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductaseThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute.. Botany 2009, 87 (6) , 616-625. https://doi.org/10.1139/B09-036
    48. Wolfgang Friedt, Rod Snowdon. Oilseed Rape. 2009, 91-126. https://doi.org/10.1007/978-0-387-77594-4_4
    49. Peiqiang Yu. Molecular chemistry of plant protein structure at a cellular level by synchrotron-based FTIR spectroscopy: Comparison of yellow (Brassica rapa) and Brown (Brassica napus) canola seed tissues. Infrared Physics & Technology 2008, 51 (5) , 473-481. https://doi.org/10.1016/j.infrared.2007.12.028
    50. , Ana Gloria Badani, Rod J. Snowdon, Benjamin Wittkop, Florin D. Lipsa, Roland Baetzel, Renate Horn, Antonio De Haro, Rafael Font, Wilfred Lühs, Wolfgang Friedt. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 2006, 49 (12) , 1499-1509. https://doi.org/10.1139/g06-091
    51. Rod Snowdon, Wolfgang Friedt, Wilfried Lühs. Brassica. 2006, 195-230. https://doi.org/10.1201/9781420005363.ch7
    52. T Mahmood, M H Rahman, G R Stringam, J P Raney, A G Good. Molecular markers for seed colour in Brassica juncea. Genome 2005, 48 (4) , 755-760. https://doi.org/10.1139/g04-122
    53. J Pedroche, M.M Yust, H Lqari, J Girón-Calle, M Alaiz, J Vioque, F Millán. Brassica carinata protein isolates: chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chemistry 2004, 88 (3) , 337-346. https://doi.org/10.1016/j.foodchem.2004.01.045
    54. P. Yu. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach. British Journal of Nutrition 2004, 92 (6) , 869-885. https://doi.org/10.1079/BJN20041298
    55. Daryl J Somers, Gerhard Rakow, Vinod K Prabhu, Ken RD Friesen. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 2001, 44 (6) , 1077-1082. https://doi.org/10.1139/g01-097
    56. M. H. Rahman, M. Joersbo, M. H. Poulsen. Development of yellow‐seeded Brassica napus of double low quality. Plant Breeding 2001, 120 (6) , 473-478. https://doi.org/10.1046/j.1439-0523.2001.00639.x
    57. B.A Slominski, J Simbaya, L.D Campbell, G Rakow, W Guenter. Nutritive value for broilers of meals derived from newly developed varieties of yellow-seeded canola. Animal Feed Science and Technology 1999, 78 (3-4) , 249-262. https://doi.org/10.1016/S0377-8401(99)00003-6
    58. RW Newkirk, HL Classen, RT Tyler. Nutritional evaluation of low glucosinolate mustard meals (Brassica juncea) in broiler diets. Poultry Science 1997, 76 (9) , 1272-1277. https://doi.org/10.1093/ps/76.9.1272
    59. F.A. Igbasan, W. Guenter. The evaluation and enhancement of the nutritive value of yellow-, green- and brown-seeded pea cultivars for unpelleted diets given to broiler chickens. Animal Feed Science and Technology 1996, 63 (1-4) , 9-24. https://doi.org/10.1016/S0377-8401(96)01045-0
    60. J. Simbaya, B.A. Slominski, W. Guenter, A. Morgan, L.D. Campbell. The effects of protease and carbohydrase supplementation on the nutritive value of canola meal for poultry: In vitro and in vivo studies. Animal Feed Science and Technology 1996, 61 (1-4) , 219-234. https://doi.org/10.1016/0377-8401(95)00939-6
    61. H. Siljander-Rasi, J. Valaja, T. Alaviuhkola, P. Rantamäki, T. Tupasela. Replacing soya bean meal with heat-treated, low-glucosinolate rapeseed meal does not affect the performance of growing-finishing pigs. Animal Feed Science and Technology 1996, 60 (1-2) , 1-12. https://doi.org/10.1016/0377-8401(95)00920-5
    62. Rod Snowdon, Wilfried Lühs, Wolfgang Friedt. Oilseed Rape. , 55-114. https://doi.org/10.1007/978-3-540-34388-2_2

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect