ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Identification of 2,4,6-trichloroanisole as a potent compound causing cork taint in wine

Cite this: J. Agric. Food Chem. 1982, 30, 2, 359–362
Publication Date (Print):March 1, 1982
https://doi.org/10.1021/jf00110a037
    ACS Legacy Archive

    Article Views

    1003

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 181 publications.

    1. Manuel Hutterli, Carla Frege, Michael Groessl, Luigi Ciotti, Luca Cappellin. High-Throughput Quantification of Trace Haloanisole and Halophenol Off-Flavor Compounds in Cork Wine Stoppers. ACS Food Science & Technology 2024, 4 (3) , 549-553. https://doi.org/10.1021/acsfoodscitech.3c00513
    2. Susana Monteiro, Nenad Bundaleski, Ana Malheiro, Miguel Cabral, Orlando M.N.D. Teodoro. Cross Contamination of 2,4,6-Trichloroanisole in Cork Stoppers. Journal of Agricultural and Food Chemistry 2022, 70 (22) , 6747-6754. https://doi.org/10.1021/acs.jafc.2c02493
    3. Luca Cappellin, Felipe D. Lopez-Hilfiker, Veronika Pospisilova, Luigi Ciotti, Paolo Pastore, Marc Gonin, Manuel A. Hutterli. Thermal Desorption–Vocus Enables Online Nondestructive Quantification of 2,4,6-Trichloroanisole in Cork Stoppers below the Perception Threshold. Analytical Chemistry 2020, 92 (14) , 9823-9829. https://doi.org/10.1021/acs.analchem.0c01326
    4. Serhii I. Vasylevskyi, Dario M. Bassani, Katharina M. Fromm. Anion-Induced Structural Diversity of Zn and Cd Coordination Polymers Based on Bis-9,10-(pyridine-4-yl)-anthracene, Their Luminescent Properties, and Highly Efficient Sensing of Nitro Derivatives and Herbicides. Inorganic Chemistry 2019, 58 (9) , 5646-5653. https://doi.org/10.1021/acs.inorgchem.8b03628
    5. Carla S. Silva Teixeira, António C. Silva Ferreira, and Nuno M. F. S. A. Cerqueira . Studying Haloanisoles Interaction with Olfactory Receptors. ACS Chemical Neuroscience 2016, 7 (7) , 870-885. https://doi.org/10.1021/acschemneuro.5b00335
    6. Sunil P. Badal, Shawn D. Michalak, George C.-Y. Chan, Yi You, and Jacob T. Shelley . Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source. Analytical Chemistry 2016, 88 (7) , 3494-3503. https://doi.org/10.1021/acs.analchem.5b03434
    7. Petra Slabizki, Claus Fischer, Charlotte Legrum, and Hans-Georg Schmarr . Characterization of Atypical Off-Flavor Compounds in Natural Cork Stoppers by Multidimensional Gas Chromatographic Techniques. Journal of Agricultural and Food Chemistry 2015, 63 (35) , 7840-7848. https://doi.org/10.1021/acs.jafc.5b02793
    8. Simon M. Fahrni, Benjamin T. Fuller, and John R. Southon . Angel’s Share Combats Wine Fraud: 14C Dating of Wine without Opening the Bottle. Analytical Chemistry 2015, 87 (17) , 8646-8650. https://doi.org/10.1021/acs.analchem.5b01998
    9. Navideh Sadoughi, Leigh M. Schmidtke, Guillaume Antalick, John W. Blackman, and Christopher C. Steel . Gas Chromatography–Mass Spectrometry Method Optimized Using Response Surface Modeling for the Quantitation of Fungal Off-Flavors in Grapes and Wine. Journal of Agricultural and Food Chemistry 2015, 63 (11) , 2877-2885. https://doi.org/10.1021/jf505444r
    10. Roger Boulton . Paired Potassium-Based Buffers for Sanitizing Winery Equipment and the Carbon, Nitrogen, Sodium, and Phosphorus Footprints of Winery Cleaning Practices. 2015, 379-387. https://doi.org/10.1021/bk-2015-1203.ch024
    11. Sonia Lequin, David Chassagne, Thomas Karbowiak, and Jean-Pierre Bellat . Sorption Equilibria of Ethanol on Cork. Journal of Agricultural and Food Chemistry 2013, 61 (22) , 5391-5396. https://doi.org/10.1021/jf4016043
    12. Thomas S. Collins Anna Hjelmeland Susan E. Ebeler . Analysis of Haloanisoles in Corks and Wines. 2012, 109-127. https://doi.org/10.1021/bk-2012-1098.ch008
    13. Eliseo Recio, María Luisa Álvarez-Rodríguez, Angel Rumbero, Enrique Garzón, and Juan José R. Coque . Destruction of Chloroanisoles by Using a Hydrogen Peroxide Activated Method and Its Application To Remove Chloroanisoles from Cork Stoppers. Journal of Agricultural and Food Chemistry 2011, 59 (23) , 12589-12597. https://doi.org/10.1021/jf2035753
    14. Pascal Chatonnet, Antoine Fleury, and Stéphane Boutou. Origin and Incidence of 2-Methoxy-3,5-dimethylpyrazine, a Compound with a “Fungal” and “Corky” Aroma Found in Cork Stoppers and Oak Chips in Contact with Wines. Journal of Agricultural and Food Chemistry 2010, 58 (23) , 12481-12490. https://doi.org/10.1021/jf102874f
    15. Pascal Chatonnet, Antoine Fleury, and Stéphane Boutou. Identification of a New Source of Contamination of Quercus sp. Oak Wood by 2,4,6-Trichloroanisole and Its Impact on the Contamination of Barrel-Aged Wines. Journal of Agricultural and Food Chemistry 2010, 58 (19) , 10528-10538. https://doi.org/10.1021/jf102571v
    16. Ariel R. Fontana, Sangram H. Patil, Kaushik Banerjee and Jorgelina C. Altamirano . Ultrasound-Assisted Emulsification Microextraction for Determination of 2,4,6-Trichloroanisole in Wine Samples by Gas Chromatography Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2010, 58 (8) , 4576-4581. https://doi.org/10.1021/jf904396g
    17. Sonia Lequin, David Chassagne, Thomas Karbowiak, Régis Gougeon, Laurent Brachais and Jean-Pierre Bellat . Adsorption Equilibria of Water Vapor on Cork. Journal of Agricultural and Food Chemistry 2010, 58 (6) , 3438-3445. https://doi.org/10.1021/jf9039364
    18. Carlos Macku, Lesa Gonzalez, Christiane Schleussner, Ana Cristina Mesquita, James W. Herwatt, Leonard C. Kirch and Rob J. Schwartz . Sensory Screening for Large-Format Natural Corks by “Dry Soak” Testing and Its Correlation to Headspace Solid-Phase Microextraction (SPME) Gas Chromatography/Mass Spectrometry (GC/MS) Releasable Trichloroanisole (TCA) Analysis. Journal of Agricultural and Food Chemistry 2009, 57 (17) , 7962-7968. https://doi.org/10.1021/jf901135p
    19. S. Jönsson, J. Hagberg and B. van Bavel. Determination of 2,4,6-Trichloroanisole and 2,4,6-Tribromoanisole in Wine Using Microextraction in Packed Syringe and Gas Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry 2008, 56 (13) , 4962-4967. https://doi.org/10.1021/jf800230y
    20. Frank Röck,, Nicolae Barsan, and, Udo Weimar. Electronic Nose:  Current Status and Future Trends. Chemical Reviews 2008, 108 (2) , 705-725. https://doi.org/10.1021/cr068121q
    21. Nuria Sanvicens,, Eric J. Moore,, George G. Guilbault, and, M.-Pilar Marco. Determination of Haloanisols in White Wine by Immunosorbent Solid-Phase Extraction Followed by Enzyme-Linked Immunosorbent Assay. Journal of Agricultural and Food Chemistry 2006, 54 (24) , 9176-9183. https://doi.org/10.1021/jf0612373
    22. Pascal Chatonnet,, Sandra Bonnet,, Stéphane Boutou, and, Marie-Dominique Labadie. Identification and Responsibility of 2,4,6-Tribromoanisole in Musty, Corked Odors in Wine. Journal of Agricultural and Food Chemistry 2004, 52 (5) , 1255-1262. https://doi.org/10.1021/jf030632f
    23. Nuria Sanvicens,, Begoña Varela, and, M.-Pilar Marco. Immunochemical Determination of 2,4,6-Trichloroanisole as the Responsible Agent for the Musty Odor in Foods. 2. Immunoassay Evaluation. Journal of Agricultural and Food Chemistry 2003, 51 (14) , 3932-3939. https://doi.org/10.1021/jf034001x
    24. Nuria Sanvicens,, Francisco Sánchez-Baeza, and, M.-Pilar Marco. Immunochemical Determination of 2,4,6-Trichloroanisole as the Responsible Agent for the Musty Odor in Foods. 1. Molecular Modeling Studies for Antibody Production. Journal of Agricultural and Food Chemistry 2003, 51 (14) , 3924-3931. https://doi.org/10.1021/jf034003h
    25. Roberto Alzaga,, Laura Ortiz,, Francisco Sánchez-Baeza,, M.-Pilar Marco, and, Josep Maria Bayona. Accurate Determination of 2,4,6-Trichloroanisole in Wines at Low Parts Per Trillion by Solid-Phase Microextraction Followed by GC-ECD. Journal of Agricultural and Food Chemistry 2003, 51 (12) , 3509-3514. https://doi.org/10.1021/jf0211682
    26. George J. Soleas,, Joseph Yan,, Tom Seaver, and, David M. Goldberg. Method for the Gas Chromatographic Assay with Mass Selective Detection of Trichloro Compounds in Corks and Wines Applied To Elucidate the Potential Cause of Cork Taint. Journal of Agricultural and Food Chemistry 2002, 50 (5) , 1032-1039. https://doi.org/10.1021/jf011149c
    27. Philippe Darriet,, Monique Pons,, Sophie Lamy, and, Denis Dubourdieu. Identification and Quantification of Geosmin, an Earthy Odorant Contaminating Wines. Journal of Agricultural and Food Chemistry 2000, 48 (10) , 4835-4838. https://doi.org/10.1021/jf0007683
    28. Marisa K. Taylor,, Thomas M. Young,, Christian E. Butzke, and, Susan E. Ebeler. Supercritical Fluid Extraction of 2,4,6-Trichloroanisole from Cork Stoppers. Journal of Agricultural and Food Chemistry 2000, 48 (6) , 2208-2211. https://doi.org/10.1021/jf991045q
    29. Larry M. Seitz,, M. S. Ram, and, Ramachandran Rengarajan. Volatiles Obtained from Whole and Ground Grain Samples by Supercritical Carbon Dioxide and Direct Helium Purge Methods:  Observations on 2,3-Butanediols and Halogenated Anisoles. Journal of Agricultural and Food Chemistry 1999, 47 (3) , 1051-1061. https://doi.org/10.1021/jf980795h
    30. Frank B. Whitfield,, Jodie L. Hill, and, Kevin J. Shaw. 2,4,6-Tribromoanisole:  a Potential Cause of Mustiness in Packaged Food. Journal of Agricultural and Food Chemistry 1997, 45 (3) , 889-893. https://doi.org/10.1021/jf960587u
    31. Sílvia Rocha,, Ivonne Delgadillo, and, A. J. Ferrer Correia. GC−MS Study of Volatiles of Normal and Microbiologically Attacked Cork from Quercus suber L.. Journal of Agricultural and Food Chemistry 1996, 44 (3) , 865-871. https://doi.org/10.1021/jf9500400
    32. Louis H. Aung,, Joseph L. Smilanick,, Patrick V. Vail,, Preston L. Hartsell, and, Encarna Gomez. Investigations into the Origin of Chloroanisoles Causing Musty Off-Flavor of Raisins. Journal of Agricultural and Food Chemistry 1996, 44 (10) , 3294-3296. https://doi.org/10.1021/jf960241j
    33. Johnny C. Lorentzen, Olle Ekberg, Maria Alm, Folke Björk, Lars-Erik Harderup, Gunnar Johanson. Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope. Microorganisms 2024, 12 (2) , 395. https://doi.org/10.3390/microorganisms12020395
    34. Susana Monteiro, Nenad Bundaleski, Ana Malheiro, Miguel Cabral, Orlando M. N. D. Teodoro. Distribution of 2,4, 6‐Trichloroanisole in cork stoppers. JSFA reports 2023, 3 (11) , 561-571. https://doi.org/10.1002/jsf2.159
    35. Susana Monteiro, Nenad Bundaleski, Paulo Lopes, Miguel Cabral, Orlando M.N.D. Teodoro. Thermal Desorption of 2,4,6-Trichloroanisole from Cork. Foods 2023, 12 (18) , 3450. https://doi.org/10.3390/foods12183450
    36. Yun-Lu Zhang, Yi-Li Lin, Tian-Yang Zhang, Yong-Shan Lu, Xiao-Yang Zhou, Zhi Liu, Zheng-Xiong Zheng, Meng-Yuan Xu, Bin Xu. Degradation of odorous 2,4,6-trichloroanisole in chlorinated water by UV-LED/chlorination: kinetics and influence factors. Environmental Science and Pollution Research 2023, 30 (15) , 44325-44336. https://doi.org/10.1007/s11356-023-25337-6
    37. Abigail Keng, Andreea Botezatu. Uncorking Haloanisoles in Wine. Molecules 2023, 28 (6) , 2532. https://doi.org/10.3390/molecules28062532
    38. Joana Azevedo, Paulo Lopes, Nuno Mateus, Victor de Freitas. Cork, a Natural Choice to Wine?. Foods 2022, 11 (17) , 2638. https://doi.org/10.3390/foods11172638
    39. Andrii Tarasov, Miguel Cabral, Christophe Loisel, Paulo Lopes, Christoph Schuessler, Rainer Jung. State-of-the-Art Knowledge about 2,4,6-Trichloroanisole (TCA) and Strategies to Avoid Cork Taint in Wine. 2022https://doi.org/10.5772/intechopen.103709
    40. Christian Philipp, Sezer Sari, Walter Brandes, Stefan Nauer, Elsa Patzl-Fischerleitner, Reinhard Eder. Reduction in Off-Flavors in Wine Using Special Filter Layers with Integrated Zeolites and the Effect on the Volatile Profile of Austrian Wines. Applied Sciences 2022, 12 (9) , 4343. https://doi.org/10.3390/app12094343
    41. Amir Bahman Radnejad, Soumodip Sarkar, Oleksiy Osiyevskyy. Design thinking in responding to disruptive innovation: A case study. The International Journal of Entrepreneurship and Innovation 2022, 23 (1) , 39-54. https://doi.org/10.1177/14657503211033940
    42. Yun-Lu Zhang, Yi-Li Lin, Tian-Yang Zhang, Yong-Shan Lu, Xiao-Yang Zhou, Zhi Liu, Zheng-Xiong Zheng, Meng-Yuan Xu, Bin Xu. Degradation of Odorous 2,4,6-Trichloroanisole in Chlorinated Water by Uv-Led/Chlorination: Kinetics and Influence Factors. SSRN Electronic Journal 2022, 53 https://doi.org/10.2139/ssrn.4179202
    43. S. Kumar, D. Duflot, S.V. Hoffmann, N.C. Jones, P. Bolognesi, L. Carlini, R. Richter, L. Avaldi, M.J. Brunger, P. Limão-Vieira. A combined experimental and theoretical study of the lowest-lying valence, Rydberg and ionic electronic states of 2,4,6-trichloroanisole. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 271 , 107751. https://doi.org/10.1016/j.jqsrt.2021.107751
    44. Liang Chen, Philippe Darriet. Strategies for the identification and sensory evaluation of volatile constituents in wine. Comprehensive Reviews in Food Science and Food Safety 2021, 20 (5) , 4549-4583. https://doi.org/10.1111/1541-4337.12810
    45. María Reyes González-Centeno, Sophie Tempère, Pierre-Louis Teissedre, Kleopatra Chira. Use of alimentary film for selective sorption of haloanisoles from contaminated red wine. Food Chemistry 2021, 350 , 128364. https://doi.org/10.1016/j.foodchem.2020.128364
    46. Charles Spence. What Is the Relationship between the Presence of Volatile Organic Compounds in Food and Drink Products and Multisensory Flavour Perception?. Foods 2021, 10 (7) , 1570. https://doi.org/10.3390/foods10071570
    47. . Chloroanisoles, Bromoanisoles, and Halophenols. 2021, 57-116. https://doi.org/10.1002/9781118979082.ch3
    48. Zdeněk Perutka, Vít Voženílek, Marek Šebela. Wine Contaminations and Frauds From the Bioanalytical and Biochemical Points of View. 2021, 104-116. https://doi.org/10.1016/B978-0-08-100596-5.22835-7
    49. Kejia Zhang, Yulong San, Cong Cao, Tuqiao Zhang, Cheng Cen, Zhang Li, Jie Fu. Kinetic and mechanistic investigation into odorant haloanisoles degradation process by peracetic acid combined with UV irradiation. Journal of Hazardous Materials 2021, 401 , 123356. https://doi.org/10.1016/j.jhazmat.2020.123356
    50. Charles Spence. Book Review. Multisensory Research 2020, 33 (3) , 363-373. https://doi.org/10.1163/22134808-20201528
    51. Caterina Mazzoni, Anne Tirard, Abdelkader Boubetra, François Roussey. Proficiency-testing scheme for haloanisoles and halophenols in oak wood. Accreditation and Quality Assurance 2020, 25 (3) , 173-178. https://doi.org/10.1007/s00769-020-01428-6
    52. Andrea M. Dietrich, Gary A. Burlingame. A review: The challenge, consensus, and confusion of describing odors and tastes in drinking water. Science of The Total Environment 2020, 713 , 135061. https://doi.org/10.1016/j.scitotenv.2019.135061
    53. Hiroko Takeuchi, Takashi Kurahashi. Suppression of olfactory signal transduction by insecticides. npj Science of Food 2019, 3 (1) https://doi.org/10.1038/s41538-019-0042-z
    54. Koichi SAITO, Yukino OSHIRO, Osamu SAKATA, Rie ITO. Enantiomeric Analysis of Flavor Compounds by Multiple Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry. CHROMATOGRAPHY 2019, 40 (3) , 105-114. https://doi.org/10.15583/jpchrom.2019.012
    55. Yuji Ukisu. Hydrogen-transfer hydrodehalogenation of aromatic halides with a silica-supported palladium catalyst in alkaline 2-propanol: comparison between brominated and chlorinated anisoles. Reaction Kinetics, Mechanisms and Catalysis 2019, 128 (1) , 41-52. https://doi.org/10.1007/s11144-019-01632-7
    56. J. Jaxel, L. Fontaine, T. Krenke, C. Hansmann, F. Liebner. Bio-inspired conformational lipophilization of wood for scCO2-assisted colouring with disperse dyes. The Journal of Supercritical Fluids 2019, 147 , 116-125. https://doi.org/10.1016/j.supflu.2019.02.017
    57. Charles Spence. Do men and women really live in different taste worlds?. Food Quality and Preference 2019, 73 , 38-45. https://doi.org/10.1016/j.foodqual.2018.12.002
    58. Andrii Tarasov, Doris Rauhut, Rainer Jung. Bottle capsules as a barrier against airborne 2,4,6-trichloroanisole. Food Chemistry 2018, 268 , 463-467. https://doi.org/10.1016/j.foodchem.2018.06.118
    59. Toru Kishimoto, Shigekuni Noba, Nana Yako, Minoru Kobayashi, Tetsuya Watanabe. Simulation of Pilsner-type beer aroma using 76 odor-active compounds. Journal of Bioscience and Bioengineering 2018, 126 (3) , 330-338. https://doi.org/10.1016/j.jbiosc.2018.03.015
    60. Lenka Sochorova, Lucie Torokova, Mojmir Baron, Jiri Sochor. Electrochemical and others techniques for the determination of malic acid and tartaric acid in must and wine. International Journal of Electrochemical Science 2018, 13 (9) , 9145-9165. https://doi.org/10.20964/2018.09.20
    61. Soumodip Sarkar, Oleksiy Osiyevskyy, Stewart R. Clegg. Incumbent capability enhancement in response to radical innovations. European Management Journal 2018, 36 (3) , 353-365. https://doi.org/10.1016/j.emj.2017.05.006
    62. Xiaorong You, Sean F. O'Keefe. Binding of volatile aroma compounds to can linings with different polymeric characteristics. Food Science & Nutrition 2018, 6 (1) , 54-61. https://doi.org/10.1002/fsn3.526
    63. N. L. Asfandiarov, M. V. Muftakhov, S. A. Pshenichnyuk, P. Papp, M. Danko, M. Lacko, J. Blaško, Š. Matejčik, A. Modelli. Dissociative electron attachment to 2,4,6-trichloroanisole and 2,4,6-tribromoanisole molecules. The Journal of Chemical Physics 2017, 147 (23) https://doi.org/10.1063/1.5007816
    64. Andrii Tarasov, Doris Rauhut, Rainer Jung. “Cork taint” responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review. Talanta 2017, 175 , 82-92. https://doi.org/10.1016/j.talanta.2017.07.029
    65. Charles Spence, Qian Wang. Assessing the Impact of Closure Type on Wine Ratings and Mood. Beverages 2017, 3 (4) , 52. https://doi.org/10.3390/beverages3040052
    66. S. Tempere, M. H. Schaaper, E. Cuzange, G. de Revel, G. Sicard. Masking of Several Olfactory Notes by Infra-threshold Concentrations of 2,4,6-Trichloroanisole. Chemosensory Perception 2017, 10 (3) , 69-80. https://doi.org/10.1007/s12078-017-9227-5
    67. Xiuzhi Bai, Ting Zhang, Zhipeng Qu, Haipu Li, Zhaoguang Yang. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants. Chemosphere 2017, 182 , 223-230. https://doi.org/10.1016/j.chemosphere.2017.04.138
    68. Angela Lopez Pinar, Rahil Ghadiriasli, Philippe Darriet, Andrea Buettner. Unexpected impact of 2-methylisoborneol as off-odour substance in aged wines. Food Chemistry 2017, 220 , 498-504. https://doi.org/10.1016/j.foodchem.2016.10.021
    69. Soumodip Sarkar. Uncorking knowledge- purposeful spillovers as a strategic tool for capability enhancement in the cork industry. International Entrepreneurship and Management Journal 2017, 13 (1) , 251-275. https://doi.org/10.1007/s11365-016-0395-6
    70. R. Meenakshi. Spectral investigations, DFT based global reactivity descriptors, Inhibition efficiency and analysis of 5-chloro-2-nitroanisole as π-spacer with donor-acceptor variations effect for DSSCs performance. Journal of Molecular Structure 2017, 1127 , 694-707. https://doi.org/10.1016/j.molstruc.2016.08.030
    71. Petra Slabizki, Charlotte Legrum, Pascal Wegmann-Herr, Claus Fischer, Hans-Georg Schmarr. Quantification of cork off-flavor compounds in natural cork stoppers and wine by multidimensional gas chromatography mass spectrometry. European Food Research and Technology 2016, 242 (6) , 977-986. https://doi.org/10.1007/s00217-015-2604-x
    72. J. C. Lorentzen, S. A. Juran, M. Nilsson, S. Nordin, G. Johanson. Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden. Indoor Air 2016, 26 (2) , 207-218. https://doi.org/10.1111/ina.12207
    73. Hiroko Takeuchi, Takashi Kurahashi. Olfactory Transduction Channels and Their Modulation by Varieties of Volatile Substances. 2016, 115-149. https://doi.org/10.1007/7355_2015_100
    74. R.M. Callejón, C. Ubeda, R. Ríos-Reina, M.L. Morales, A.M. Troncoso. Recent developments in the analysis of musty odour compounds in water and wine: A review. Journal of Chromatography A 2016, 1428 , 72-85. https://doi.org/10.1016/j.chroma.2015.09.008
    75. Charles Spence, Qian Wang. Wine and music (I): on the crossmodal matching of wine and music. Flavour 2015, 4 (1) https://doi.org/10.1186/s13411-015-0045-x
    76. Min Liu, Qing-qing Peng, Yu-feng Chen, Qian Tang, Qing Feng. A rapid space-resolved solid-phase microextraction method as a powerful tool to determine contaminants in wine based on their volatility. Food Chemistry 2015, 176 , 12-16. https://doi.org/10.1016/j.foodchem.2014.12.037
    77. Nobuhiko MUKAI, Jinshun HAN, Osamu YAMADA, Haruyuki IEFUJI. Determination of 2,4,6-Trichloroanisole (TCA) in shochu by combination with headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), and the investigation of TCA contamination in shochu. JOURNAL OF THE BREWING SOCIETY OF JAPAN 2015, 110 (6) , 453-458. https://doi.org/10.6013/jbrewsocjapan.110.453
    78. Zuzana Lichvanová, Vahideh Ilbeigi, Martin Sabo, Mahmoud Tabrizchi, Štefan Matejčík. Using corona discharge-ion mobility spectrometry for detection of 2,4,6-Trichloroanisole. Talanta 2014, 127 , 239-243. https://doi.org/10.1016/j.talanta.2014.04.021
    79. Hiroyuki KATO. Effect and Mechanism of TCA to Wine Flavor. JOURNAL OF THE BREWING SOCIETY OF JAPAN 2014, 109 (6) , 426-432. https://doi.org/10.6013/jbrewsocjapan.109.426
    80. Henryk H. Jeleń, Mariusz Dziadas, Małgorzata Majcher. Different headspace solid phase microextraction – Gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine. Journal of Chromatography A 2013, 1313 , 185-193. https://doi.org/10.1016/j.chroma.2013.07.080
    81. Hiroko Takeuchi, Hiroyuki Kato, Takashi Kurahashi. 2,4,6-Trichloroanisole is a potent suppressor of olfactory signal transduction. Proceedings of the National Academy of Sciences 2013, 110 (40) , 16235-16240. https://doi.org/10.1073/pnas.1300764110
    82. Gustavo González-Gaitano, María Alicia Calvo Ferrer. Definition of QC Parameters for the Practical Use of FTIR-ATR Spectroscopy in the Analysis of Surface Treatment of Cork Stoppers. Journal of Wood Chemistry and Technology 2013, 33 (3) , 217-233. https://doi.org/10.1080/02773813.2013.779715
    83. Rocío Morales, Luis A. Sarabia, M. Sagrario Sánchez, M. Cruz Ortiz. Experimental design for the optimization of the derivatization reaction in determining chlorophenols and chloroanisoles by headspace-solid-phase microextraction–gas chromatography/mass spectrometry. Journal of Chromatography A 2013, 1296 , 179-195. https://doi.org/10.1016/j.chroma.2013.04.038
    84. Carla Eliete Iochims dos Santos, Rafaela Debastiani, Wojciech Przybylowicz, Vitor Manfroi, Lívio Amaral, Maria Lúcia Yoneama, Johnny Ferraz Dias. Study of the elemental composition of wine stoppers using PIXE. X-Ray Spectrometry 2013, 42 (3) , 158-164. https://doi.org/10.1002/xrs.2451
    85. Petra Slabizki, Hans-Georg Schmarr. Analysis of corky off-flavour compounds at ultra trace level with multidimensional gas chromatography-electron capture detection. Journal of Chromatography A 2013, 1271 (1) , 181-184. https://doi.org/10.1016/j.chroma.2012.11.020
    86. Charles Spence. Review of ‘Taste Matters: Why We Like the Foods We Do’ by John Prescott. Flavour 2012, 1 (1) https://doi.org/10.1186/2044-7248-1-23
    87. C. Pizarro, C. Sáenz-González, N. Pérez-del-Notario, J.M. González-Sáiz. Simultaneous determination of cork taint and Brett character responsible compounds in wine using ultrasound-assisted emulsification microextraction with solidification of floating organic drop. Journal of Chromatography A 2012, 1249 , 54-61. https://doi.org/10.1016/j.chroma.2012.06.043
    88. C. Pizarro, C. Sáenz-González, N. Pérez-del-Notario, J.M. González-Sáiz. Optimisation of ultrasound-assisted emulsification microextraction method with solidification of floating organic drop for the analysis of cork taint responsible compounds in wine. Journal of Chromatography A 2012, 1248 , 60-66. https://doi.org/10.1016/j.chroma.2012.05.100
    89. Ariel R. Fontana. Analytical methods for determination of cork-taint compounds in wine. TrAC Trends in Analytical Chemistry 2012, 37 , 135-147. https://doi.org/10.1016/j.trac.2012.03.012
    90. Consuelo Pizarro, Cristina Sáenz-González, Nuria Pérez-del-Notario, José María González-Sáiz. Optimisation of a sensitive method based on ultrasound-assisted emulsification–microextraction for the simultaneous determination of haloanisoles and volatile phenols in wine. Journal of Chromatography A 2012, 1244 , 37-45. https://doi.org/10.1016/j.chroma.2012.04.070
    91. Zeev Karpas, Ana V. Guamán, Daniel Calvo, Antonio Pardo, Santiago Marco. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine. Talanta 2012, 93 , 200-205. https://doi.org/10.1016/j.talanta.2012.02.012
    92. Maciej Stobiecki, Piotr Kachlicki, Henryk Jeleñ. Mass Spectrometry in Agriculture, Food, and Flavors: Selected Applications. 2012, 529-558. https://doi.org/10.1002/9781118180730.ch24
    93. Heinrich Wamhoff, Gordon W. Gribble. Wine and Heterocycles. 2012, 185-225. https://doi.org/10.1016/B978-0-12-396531-8.00003-1
    94. Ryoichi TAJIMA. The Technology for Removing Musty Odor Substance (Haloanisoles) from Cork.. JOURNAL OF THE BREWING SOCIETY OF JAPAN 2012, 107 (3) , 177-184. https://doi.org/10.6013/jbrewsocjapan.107.177
    95. Akira WANIKAWA. Control of Off Flavor in Beer. JOURNAL OF THE BREWING SOCIETY OF JAPAN 2012, 107 (8) , 559-570. https://doi.org/10.6013/jbrewsocjapan.107.559
    96. Ray Marsili. Analysis of musty microbial metabolites by stir bar sorptive extraction. 2011, 63-92. https://doi.org/10.1201/b11446-5
    97. Henryk Jeleń. Specificity of Food Odorants. 2011, 1-18. https://doi.org/10.1201/b11187-2
    98. Isabel Márquez-Sillero, Soledad Cárdenas, Miguel Valcárcel. Direct determination of 2,4,6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection. Journal of Chromatography A 2011, 1218 (42) , 7574-7580. https://doi.org/10.1016/j.chroma.2011.06.032
    99. . Food Preservation and Shelf Life. 2011, 253-297. https://doi.org/10.1002/9781119949794.ch7
    100. Chantal Prat, Emili Besalú, Lluís Bañeras, Enriqueta Anticó. Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers. Food Chemistry 2011, 126 (4) , 1978-1984. https://doi.org/10.1016/j.foodchem.2010.12.057
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect