ACS Publications. Most Trusted. Most Cited. Most Read
Structures of 1-(Arylseleninyl)naphthalenes:  O, G, and Y Dependences in 8-G-1-[p-YC6H4Se(O)]C10H6
My Activity
    Article

    Structures of 1-(Arylseleninyl)naphthalenes:  O, G, and Y Dependences in 8-G-1-[p-YC6H4Se(O)]C10H6
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
    Other Access OptionsSupporting Information (12)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2006, 71, 15, 5574–5585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo060527f
    Published June 17, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Structures of 8-G-1-[p-YC6H4Se(O)]C10H6 [1 (G = H), 2 (G = F), 3 (G = Cl), and 4 (G = Br):  Y = H, OMe, OCH2Ph, t-Bu, Me, Cl, and NO2] and (1-C10H7)2SeO (5) are investigated by the X-ray crystallographic analysis. Structures of 1 are all A with regard to the naphthyl group (1 (A)), where the Se−CAr and Se−O bonds are perpendicular to and parallel to the naphthyl plane, respectively. Those of 2−4 are also A. Since structures of 8-G-1-(p-YC6H4Se)C10H6 [7 (G = F), 8 (G = Cl), and 9 (G = Br)] are all B, the results exhibit that B of 79 change dramatically to A of 24 with the introduction of O atoms. The factor to determine the A structures of 14 by O is called O dependence. The origin of the O dependence is the nonbonded np(O)- - -π(Nap) interaction, which results in CT from np(O) to π(Nap) since O in 1−4 is highly electron rich due to the polar Se+=O- bond and π(Nap) acts as an acceptor. There are two types of np(O)'s, npy(O) and npz(O), if the directions of the Se−O bond and the p-orbitals of π(Nap) are taken in the x- and z-axes, respectively. Double but independent np(O)- - -π(Nap) interactions in 5 lead to 5 (AA). The conformation of the p-YC6H4Se group in 1 changes depending on Y (Y dependence), although the effect is not strong. The Y dependence is explained on the basis of the magnitude of CT of the np(O)→π(Ar) type in 1, in addition to the np(O)- - -π(Nap) interaction. The structure around the SeO group in 1 is close to that of 5 (AA), if the accepting ability of the p-YC6H4Se group is similar to that of the naphthyl group. A of 24 are further stabilized by the np(G)- - -σ*(Se−O) 3c−4e interactions, which are called G dependence. QC calculations performed on the methyl analogues of 14 (1114, respectively) reproduced the observed structures, supported the above discussion, and revealed the energy profiles. The energy-lowering effect of the O dependence would be close to the G dependence of the nonbonded n(Br)- - -σ*(Se−O) 3c−4e interaction in 14 if the steric repulsion between Br and Se is contained in the G dependence. The value is roughly predicted as 20 kJ mol-1. The structures of 15 are well explained by O, G, and Y dependences.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Tel:  +81 73 457 8252. Fax:  +81 73 457 8253.

    Supporting Information Available

    Click to copy section linkSection link copied!

    General experimental details; X-ray crystallographic data for 1a, 1b‘, 1d, 1e, 1f, 2b, 3c, 3e, 4b, 5, and 10 (CIF); ORTEP structures of 1d, 1f, and 3c; optimized structures given by Cartesian coordinates for 1114 and 11H+, together with the total energies and the method for the calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Lydia M. Bouchet, Alicia B. Peñéñory, Adriana B. Pierini, Juan E. Argüello. Combined Experimental and Theoretical Studies on the Radical Nucleophile Addition Reaction for Sulfide- and Selenide-Centered Anions. The Journal of Physical Chemistry A 2019, 123 (24) , 5035-5042. https://doi.org/10.1021/acs.jpca.9b02485
    2. Kasun S. Athukorala Arachchige, Louise M. Diamond, Fergus R. Knight, Marie-Luise Lechner, Alexandra M. Z. Slawin, and J. Derek Woollins . Synthetic, Structural, and Spectroscopic Studies of Sterically Crowded Tin–Chalcogen Acenaphthenes. Organometallics 2014, 33 (21) , 6089-6102. https://doi.org/10.1021/om500755w
    3. Brian A. Chalmers, Kasun S. Athukorala Arachchige, Joanna K. D. Prentis, Fergus R. Knight, Petr Kilian, Alexandra M. Z. Slawin, and J. Derek Woollins . Sterically Encumbered Tin and Phosphorus peri-Substituted Acenaphthenes. Inorganic Chemistry 2014, 53 (16) , 8795-8808. https://doi.org/10.1021/ic5014768
    4. Kasun S. Athukorala Arachchige, Paula Sanz Camacho, Matthew J. Ray, Brian A. Chalmers, Fergus R. Knight, Sharon E. Ashbrook, Michael Bühl, Petr Kilian, Alexandra M. Z. Slawin, and J. Derek Woollins . Sterically Restricted Tin Phosphines, Stabilized by Weak Intramolecular Donor–Acceptor Interactions. Organometallics 2014, 33 (10) , 2424-2433. https://doi.org/10.1021/om500289b
    5. Fergus R. Knight, Rebecca A. M. Randall, Kasun S. Athukorala Arachchige, Lucy Wakefield, John M. Griffin, Sharon E. Ashbrook, Michael Bühl, Alexandra M. Z. Slawin, and J. Derek Woollins . Noncovalent Interactions in Peri-Substituted Chalconium Acenaphthene and Naphthalene Salts: A Combined Experimental, Crystallographic, Computational, and Solid-State NMR Study. Inorganic Chemistry 2012, 51 (20) , 11087-11097. https://doi.org/10.1021/ic301627y
    6. Marie-Luise Lechner, Kasun S. Athukorala Arachchige, Rebecca A. M. Randall, Fergus R. Knight, Michael Bühl, Alexandra M. Z. Slawin, and J. Derek Woollins . Sterically Crowded Tin Acenaphthenes. Organometallics 2012, 31 (7) , 2922-2930. https://doi.org/10.1021/om201253t
    7. Waro Nakanishi, Satoko Hayashi, Mateusz B. Pitak, Michael B. Hursthouse, and Simon J. Coles . Dynamic and Static Behaviors of N–Z–N σ(3c–4e) (Z = S, Se, and Te) Interactions: Atoms-in-Molecules Dual Functional Analysis with High-Resolution X-ray Diffraction Determination of Electron Densities for 2-(2-Pyridylimino)-2H-1,2,4-thiadiazolo[2,3-a]pyridine. The Journal of Physical Chemistry A 2011, 115 (42) , 11775-11787. https://doi.org/10.1021/jp2044898
    8. Anna J. Mukherjee, Sanjio S. Zade, Harkesh B. Singh and Raghavan B. Sunoj . Organoselenium Chemistry: Role of Intramolecular Interactions. Chemical Reviews 2010, 110 (7) , 4357-4416. https://doi.org/10.1021/cr900352j
    9. Waro Nakanishi, Satoko Hayashi and Kenji Narahara. Polar Coordinate Representation of Hb(rc) versus (ℏ2/8m)▽2ρb(rc) at BCP in AIM Analysis: Classification and Evaluation of Weak to Strong Interactions. The Journal of Physical Chemistry A 2009, 113 (37) https://doi.org/10.1021/jp903622a
    10. Satoko Hayashi, Takashi Nakamoto, Mao Minoura and Waro Nakanishi . Evidence for Effective p(Z)−π(Ar) Conjugations (Z = S, Se, and Te, as Well as Z = O) in 9-(Arylchalcogenyl)triptycenes: Experimental and Theoretical Investigations. The Journal of Organic Chemistry 2009, 74 (13) , 4763-4771. https://doi.org/10.1021/jo900488r
    11. Waro Nakanishi, Satoko Hayashi and Kenji Narahara. Atoms-in-Molecules Dual Parameter Analysis of Weak to Strong Interactions: Behaviors of Electronic Energy Densities versus Laplacian of Electron Densities at Bond Critical Points. The Journal of Physical Chemistry A 2008, 112 (51) , 13593-13599. https://doi.org/10.1021/jp8054763
    12. Takashi Nakamoto, Satoko Hayashi and Waro Nakanishi. 77Se NMR Chemical Shifts of 9-(Arylselanyl)triptycenes: New Standard for Planar Structures of ArSeR and Applications to Determine the Structures in Solutions. The Journal of Organic Chemistry 2008, 73 (23) , 9259-9269. https://doi.org/10.1021/jo801786j
    13. Sergi Burguera, Rosa M. Gomila, Antonio Bauzá, Antonio Frontera. Selenoxides as Excellent Chalcogen Bond Donors: Effect of Metal Coordination. Molecules 2022, 27 (24) , 8837. https://doi.org/10.3390/molecules27248837
    14. Jinwei Liang, Yulong Shi, Yunxiang Lu, Zhijian Xu, Honglai Liu. Square tetravalent chalcogen bonds in dimeric aggregates: a joint crystallographic survey and theoretical study. CrystEngComm 2022, 24 (5) , 975-986. https://doi.org/10.1039/D1CE01364E
    15. Edward R.T. Tiekink. Zero-, one-, two- and three-dimensional supramolecular architectures sustained by Se…O chalcogen bonding: A crystallographic survey. Coordination Chemistry Reviews 2021, 427 , 213586. https://doi.org/10.1016/j.ccr.2020.213586
    16. Julianna Mruk, Leszek Pazderski, Jacek Ścianowski, Andrzej Wojtczak. Structural and NMR spectroscopic studies of 2-phenylsulfanylpyridine and its analogues or derivatives, and their Au(III) chloride complexes. Inorganica Chimica Acta 2020, 500 , 119182. https://doi.org/10.1016/j.ica.2019.119182
    17. Waro Nakanishi, Satoko Hayashi, Masato Hashimoto, Massimiliano Arca, Maria Carla Aragoni, Vito Lippolis. Recent Advances of Structural Chemistry of Organoselenium and Organotellurium Compounds. 2014, 1-88. https://doi.org/10.1002/9780470682531.pat0701
    18. Ignez Caracelli, Ionel Haiduc, Julio Zukerman‐Schpector, Edward R. T. Tiekink. Supramolecular Architectures Based on M (lone pair)…π(arene) Interactions for M  S e and T e. 2014, 1-16. https://doi.org/10.1002/9780470682531.pat0724
    19. Fergus R. Knight, Rebecca A. M. Randall, Tracey L. Roemmele, René T. Boeré, Bela E. Bode, L. Ellis Crawford, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins. Electrochemically Informed Synthesis: Oxidation versus Coordination of 5,6‐Bis(phenylchalcogeno)acenaphthenes. ChemPhysChem 2013, 14 (14) , 3199-3203. https://doi.org/10.1002/cphc.201300678
    20. Masaichi Saito, Masahiro Fujita, Yoshihiko Kanatomi, Kazuya Ishimura. Debromination of 1,2-Bis(phenylseleno)benzene Dibromide. Bulletin of the Chemical Society of Japan 2013, 86 (8) , 990-992. https://doi.org/10.1246/bcsj.20130098
    21. Fergus R. Knight, Rebecca A. M. Randall, Lucy Wakefield, Alexandra M. Z. Slawin, J. Derek Woollins. Silver( i ) coordination complexes and extended networks assembled from S, Se, Te substituted acenaphthenes. Dalton Trans. 2013, 42 (1) , 143-154. https://doi.org/10.1039/C2DT31390A
    22. Arunashree Panda, Harkesh B. Singh. NMR of Organoselenium and Organotellurium Compounds. 2012https://doi.org/10.1002/9780470682531.pat0702
    23. Fergus R. Knight, Rebecca A. M. Randall, Lucy Wakefield, Alexandra M. Z. Slawin, J. Derek Woollins. Investigating Silver Coordination to Mixed Chalcogen Ligands. Molecules 2012, 17 (11) , 13307-13329. https://doi.org/10.3390/molecules171113307
    24. Ignez Caracelli, Julio Zukerman-Schpector, Edward R.T. Tiekink. Supramolecular aggregation patterns based on the bio-inspired Se(lone pair)⋯π(aryl) synthon. Coordination Chemistry Reviews 2012, 256 (3-4) , 412-438. https://doi.org/10.1016/j.ccr.2011.10.021
    25. Lara K. Aschenbach, Fergus R. Knight, Rebecca A. M. Randall, David B. Cordes, Alex Baggott, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins. Onset of three-centre, four-electron bonding in peri-substituted acenaphthenes: A structural and computational investigation. Dalton Trans. 2012, 41 (11) , 3141-3153. https://doi.org/10.1039/C1DT11697E
    26. Fergus R. Knight, Kasun S. Athukorala Arachchige, Rebecca A. M. Randall, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins. Exploring hypervalency and three-centre, four-electron bonding interactions: Reactions of acenaphthene chalcogen donors and dihalogen acceptors. Dalton Transactions 2012, 41 (11) , 3154. https://doi.org/10.1039/c2dt12031c
    27. Takahito Nakai, Mitsuhiro Nishino, Satoko Hayashi, Masato Hashimoto, Waro Nakanishi. Role of p(Z)–π(Ar/Nap) conjugation in structures of 1-(arylchalcogena)naphthalenes for Z = Te versus Se, S and O: experimental and theoretical investigations. Dalton Transactions 2012, 41 (25) , 7485. https://doi.org/10.1039/c2dt30516j
    28. Mohanad Shkoor, Olumide Fatunsin, Abdolmajid Riahi, Peter Langer. Synthesis of 2-Hydroxy-5-Arylselanyl-Benzoates by [3+3] Cyclocondensation of 1,3-Bis(Silyloxy)-1,3-Butadienes with 2-Arylseleno-3-Silyloxy-Alk-2-en-1-Ones. Phosphorus, Sulfur, and Silicon and the Related Elements 2011, 186 (9) , 1997-2005. https://doi.org/10.1080/10426507.2011.597802
    29. Petr Kilian, Fergus R. Knight, J. Derek Woollins. Naphthalene and Related Systems peri ‐Substituted by Group 15 and 16 Elements. Chemistry – A European Journal 2011, 17 (8) , 2302-2328. https://doi.org/10.1002/chem.201001750
    30. Akito Tanioku, Takahito Nakai, Satoko Hayashi, Waro Nakanishi. How do weak Z–X–X and stronger X–Z–X interactions affect NMR chemical shifts of chalcogenide dihalides, R 2 Z·X 2 ? Theoretical background on the structural prediction of R 2 Z·X 2 through chemical shifts in solutions. Heteroatom Chemistry 2011, 22 (3-4) , 446-456. https://doi.org/10.1002/hc.20707
    31. Kriti Srivastava, Tapash Chakraborty, Harkesh B. Singh, Ray J. Butcher. Intramolecularly coordinated azobenzene selenium derivatives: Effect of strength of the Se⋯N intramolecular interaction on luminescence. Dalton Transactions 2011, 40 (17) , 4489. https://doi.org/10.1039/c0dt01319f
    32. Inam Iqbal, Muhammad Imran, Peter Langer. Synthesis of 5‐(Arylselanyl)‐2‐(arylsulfanyl)benzoates by [3+3] Cyclocondensation of 3‐(Arylsulfanyl)‐1‐(silyloxy)buta‐1,3‐dienes with 2‐(Arylselanyl)‐3‐(silyloxy)alk‐2‐en‐1‐ones. Helvetica Chimica Acta 2010, 93 (9) , 1779-1784. https://doi.org/10.1002/hlca.201000110
    33. Fergus R. Knight, Amy L. Fuller, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins. Synthetic and Structural Studies of 1,8‐Chalcogen Naphthalene Derivatives. Chemistry – A European Journal 2010, 16 (25) , 7503-7516. https://doi.org/10.1002/chem.200903523
    34. Fergus R. Knight, Amy L. Fuller, Michael Bühl, Alexandra M. Z. Slawin, J. Derek Woollins. Synthetic and Structural Studies of 1‐Halo‐8‐(alkylchalcogeno)naphthalene Derivatives. Chemistry – A European Journal 2010, 16 (25) , 7605-7616. https://doi.org/10.1002/chem.201000435
    35. Takahito Nakai, Satoko Hayashi, Waro Nakanishi. P(O, S, Se, and Te)–π(Ar) Conjugations as Factors to Control Fine Structures of 1-(Chalcogena)naphthalenes. Phosphorus, Sulfur, and Silicon and the Related Elements 2010, 185 (5-6) , 1031-1045. https://doi.org/10.1080/10426501003772235
    36. Mohanad Shkoor, Olumide Fatunsin, Abdolmajid Riahi, Alexander Villinger, Peter Langer. Synthesis of functionalized diaryl selenides by the first [3+3] cyclocondensations of 1,3-bis(silyloxy)-1,3-butadienes with organoselenium compounds. Tetrahedron Letters 2009, 50 (41) , 5726-5728. https://doi.org/10.1016/j.tetlet.2009.07.136
    37. Satoko Hayashi, Waro Nakanishi. How Are Non-Bonded G···Z (Z = O, S, and Se) Distances at Benzene 1,2-, Naphthalene 1,8-, and Anthracene 1,8,9-Positions Controlled? An Approach to Causality in Weak Interactions. Bulletin of the Chemical Society of Japan 2009, 82 (6) , 712-722. https://doi.org/10.1246/bcsj.82.712
    38. Satoko Hayashi, Waro Nakanishi, Atsushi Furuta, Jozef Drabowicz, Takahiro Sasamori, Norihiro Tokitoh. How does non-covalent Se⋯SeO interaction stabilize selenoxides at naphthalene 1,8-positions: structural and theoretical investigations. New J. Chem. 2009, 33 (1) , 196-206. https://doi.org/10.1039/B809763A
    39. Takashi Nakamoto, Satoko Hayashi, Waro Nakanishi, Mao Minoura, Gaku Yamamoto. Structures and dynamic stereochemistry of 9-arylselanyltriptycenes: X-ray crystallographic, spectroscopic and theoretical investigations. New Journal of Chemistry 2009, 33 (7) , 1588. https://doi.org/10.1039/b817949b
    40. Satoko Hayashi, Kentaro Yamane, Waro Nakanishi, . Fine Structures of 8‐G‐1‐( p ‐YC 6 H 4 C ≡ CSe)C 10 H 6 (G = H, Cl, and Br) in Crystals and Solutions: Ethynyl Influence and Y‐ and G‐Dependences. Bioinorganic Chemistry and Applications 2009, 2009 (1) https://doi.org/10.1155/2009/347359
    41. Satoko Hayashi, Waro Nakanishi. Noncovalent Z···Z (Z=O, S, Se, and Te) Interactions: How Do They Operate to Control Fine Structures of 1,8-Dichalcogene-Substituted Naphthalenes?. Bulletin of the Chemical Society of Japan 2008, 81 (12) , 1605-1615. https://doi.org/10.1246/bcsj.81.1605
    42. Kentaro Yamane, Satoko Hayashi, Waro Nakanishi, Takahiro Sasamori, Norihiro Tokitoh. Fine structures of 8-G-1-(arylethynylselanyl)naphthalenes (G = H, Cl, Br): Factors to control the linear alignment of five G⋯Se–C C–CAr atoms in crystals and the behavior in solution. Polyhedron 2008, 27 (18) , 3557-3566. https://doi.org/10.1016/j.poly.2008.08.026
    43. Kentaro Yamane, Satoko Hayashi, Waro Nakanishi, Takahiro Sasamori, Norihiro Tokitoh. Fine structures of 1-(arylethynylselanyl)naphthalenes: Characteristic features brought by the ethynylselanyl group. Polyhedron 2008, 27 (11) , 2478-2486. https://doi.org/10.1016/j.poly.2008.04.052
    44. Waro Nakanishi, Satoko Hayashi, Sayuri Morinaka, Takahiro Sasamori, Norihiro Tokitoh. Extended hypervalent E′⋯E–E⋯E′ 4c–6e (E, E′ = Se, S) interactions: structure, stability and reactivity of 1-(8-PhE′C10H6)EE(C10H6E′Ph-8′)-1′. New Journal of Chemistry 2008, 32 (11) , 1881. https://doi.org/10.1039/b805678a
    45. Takahiro Soma, Nobumasa Kamigata, Kazunori Hirabayashi, Toshio Shimizu. Optical Resolution of Selenonium Imides Stabilized by an 8-Dimethylamino-1-naphthyl Group. Bulletin of the Chemical Society of Japan 2007, 80 (12) , 2389-2394. https://doi.org/10.1246/bcsj.80.2389
    46. Dipankar Roy, Raghavan B. Sunoj. Intramolecular nonbonding interactions in organoseleniums: Quantification using a computational thermochemical approach. Journal of Molecular Structure: THEOCHEM 2007, 809 (1-3) , 145-152. https://doi.org/10.1016/j.theochem.2007.01.022

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2006, 71, 15, 5574–5585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo060527f
    Published June 17, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    366

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.