Improved Synthesis of Functionalized 2,2‘-BipyrrolesClick to copy article linkArticle link copied!
Abstract

A series of 2,2‘-bipyrroles has been efficiently synthesized using an improved synthetic approach based on Pd(0)-catalyzed homocoupling of various 2-iodopyrroles. This new synthetic approach takes place at room temperature and in the presence of water. Functional groups such as formyl, ester, and nitrile are able to survive these reaction conditions. Solvents are found to play an important role in this reaction.
*
In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 36 publications.
- Andrii Varenikov, Evgeny Shapiro, Mark Gandelman. Decarboxylative Halogenation of Organic Compounds. Chemical Reviews 2021, 121
(1)
, 412-484. https://doi.org/10.1021/acs.chemrev.0c00813
- Changjiang Yu, Wei Miao, Jun Wang, Erhong Hao, and Lijuan Jiao . PyrrolylBODIPYs: Syntheses, Properties, and Application as Environment-Sensitive Fluorescence Probes. ACS Omega 2017, 2
(7)
, 3551-3561. https://doi.org/10.1021/acsomega.7b00444
- Shota Nomiyama, Takahiro Ogura, Hiroaki Ishida, Kazuki Aoki, and Teruhisa Tsuchimoto . Indium-Catalyzed Regioselective β-Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes and Its Application to Construction of a Quaternary Carbon Center with a β-Pyrrolyl Group. The Journal of Organic Chemistry 2017, 82
(10)
, 5178-5197. https://doi.org/10.1021/acs.joc.7b00446
- Gonzalo Anguera and David Sánchez-García . Porphycenes and Related Isomers: Synthetic Aspects. Chemical Reviews 2017, 117
(4)
, 2481-2516. https://doi.org/10.1021/acs.chemrev.6b00345
- Jun-ichiro Setsune . 2,2′-Bipyrrole-Based Porphyrinoids. Chemical Reviews 2017, 117
(4)
, 3044-3101. https://doi.org/10.1021/acs.chemrev.6b00430
- Anon Bunrit, Supaporn Sawadjoon, Svetlana Tšupova, Per J. R. Sjöberg, and Joseph S. M. Samec . A General Route to β-Substituted Pyrroles by Transition-Metal Catalysis. The Journal of Organic Chemistry 2016, 81
(4)
, 1450-1460. https://doi.org/10.1021/acs.joc.5b02581
- Gonzalo Anguera, Brice Kauffmann, José I. Borrell, Salvador Borrós, and David Sánchez-García . Quaterpyrroles as Building Blocks for the Synthesis of Expanded Porphyrins. Organic Letters 2015, 17
(9)
, 2194-2197. https://doi.org/10.1021/acs.orglett.5b00767
- Ting Jiang, Ping Zhang, Changjiang Yu, Jian Yin, Lijuan Jiao, En Dai, Jun Wang, Yun Wei, Xiaolong Mu, and Erhong Hao . Straightforward Synthesis of Oligopyrroles through a Regioselective SNAr Reaction of Pyrroles and Halogenated Boron Dipyrrins. Organic Letters 2014, 16
(7)
, 1952-1955. https://doi.org/10.1021/ol500507f
- Anup Rana and Pradeepta K. Panda . β-Octamethoxyporphycenes. Organic Letters 2014, 16
(1)
, 78-81. https://doi.org/10.1021/ol403068j
- Rishikesh Narayan, Roland Fröhlich, and Ernst-Ulrich Würthwein . Synthesis of Pyrroles through a 4π-Electrocyclic Ring-Closure Reaction of 1-Azapentadienyl Cations. The Journal of Organic Chemistry 2012, 77
(4)
, 1868-1879. https://doi.org/10.1021/jo202477h
- Teruhisa Tsuchimoto, Tatsuya Wagatsuma, Kazuki Aoki and Jun Shimotori. Indium-Catalyzed Reductive Alkylation of Pyrroles with Alkynes and Hydrosilanes: Selective Synthesis of β-Alkylpyrroles. Organic Letters 2009, 11
(10)
, 2129-2132. https://doi.org/10.1021/ol900651u
- David Sánchez-García, José I. Borrell and Santi Nonell. One-Pot Synthesis of Substituted 2,2′-Bipyrroles. A Straightforward Route to Aryl Porphycenes. Organic Letters 2009, 11
(1)
, 77-79. https://doi.org/10.1021/ol802380g
- Arben Beriša, Matija Gredičak. Chiral phosphoric acid-catalyzed Friedel–Crafts reaction of 2,5-disubstituted and 2-monosubstituted pyrroles with isoindolinone-derived ketimines. Organic & Biomolecular Chemistry 2023, 21
(16)
, 3381-3387. https://doi.org/10.1039/D3OB00326D
- Amol Prakash Pawar, Jyothi Yadav, Atul Jankiram Dolas, Eldhose Iype, Krishnan Rangan, Indresh Kumar. Catalyst-free direct regiospecific multicomponent synthesis of C3-functionalized pyrroles. Organic & Biomolecular Chemistry 2022, 20
(29)
, 5747-5758. https://doi.org/10.1039/D2OB00961G
- Amol Prakash Pawar, Jyothi Yadav, Nisar Ahmad Mir, Eldhose Iype, Krishnan Rangan, Sumati Anthal, Rajni Kant, Indresh Kumar. Direct catalytic synthesis of β-(C3)-substituted pyrroles: a complementary addition to the Paal–Knorr reaction. Chemical Communications 2021, 57
(2)
, 251-254. https://doi.org/10.1039/D0CC06357F
- Lei Zhang, Shao-Hua Xiang, Jun Wang, Jian Xiao, Jun-Qi Wang, Bin Tan. Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nature Communications 2019, 10
(1)
https://doi.org/10.1038/s41467-019-08447-z
- Boris A. Trofimov, Elena F. Sagitova, Olga V. Petrova, Lyubov N. Sobenina, Igor A. Ushakov, Alexander V. Vashchenko. Efficient switching from the 2,3′- to 2,2′-bipyrrole scaffold via the recyclization of 1-(benzoylmethylanilino)-3-imino-3 H -2-cyanopyrrolizines: Crucial effect of the DBU organic superbase. Tetrahedron Letters 2017, 58
(23)
, 2209-2212. https://doi.org/10.1016/j.tetlet.2017.04.065
- Olga V. Petrova, Elena F. Sagitova, Lyubov N. Sobenina, Igor A. Ushakov, Tat′yana N. Borodina, Vladimir I. Smirnov, Boris A. Trofimov. Synthesis of functionalized 2,2′- and 2,3′-bipyrroles via 3-imino-3H-pyrrolizine-2-carbonitriles. Tetrahedron Letters 2016, 57
(32)
, 3652-3656. https://doi.org/10.1016/j.tetlet.2016.07.006
- Gonzalo Anguera, Salvador Borrós, José I. Borrell, David Sánchez-García. A new synthesis of isoamethyrins: A 4+2 route. Journal of Porphyrins and Phthalocyanines 2016, 20
(08n11)
, 1055-1059. https://doi.org/10.1142/S1088424616500553
- Wen‐Wen Xie, Yue Liu, Rui Yuan, Dan Zhao, Tian‐Zhi Yu, Jian Zhang, Chao‐Shan Da. Transition Metal‐Free Homocoupling of Unactivated Electron‐Deficient Azaarenes. Advanced Synthesis & Catalysis 2016, 358
(6)
, 994-1002. https://doi.org/10.1002/adsc.201500445
- Anup Rana, Pradeepta K. Panda. β-Tetrachlorotetramethoxyporphycenes: positional effect of substituents on structure and photophysical properties. Chemical Communications 2015, 51
(61)
, 12239-12242. https://doi.org/10.1039/C5CC03867G
- Shota Nomiyama, Teruhisa Tsuchimoto. Metal‐Free Regioselective β‐Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes: Use of a Brønsted Acid as a Catalyst. Advanced Synthesis & Catalysis 2014, 356
(18)
, 3881-3891. https://doi.org/10.1002/adsc.201400497
- Cybille Rossy, Jérôme Majimel, Mona Tréguer Delapierre, Eric Fouquet, François-Xavier Felpin. On the peculiar recycling properties of charcoal-supported palladium oxide nanoparticles in Sonogashira reactions. Applied Catalysis A: General 2014, 482 , 157-162. https://doi.org/10.1016/j.apcata.2014.05.019
- Tao Yin, Ruimao Hua. Straightforward Approach to Synthesize 3,3′-Bipyrroles by Oxidative Homocoupling of 1,2,5-Trisubstituted Pyrroles. Chemistry Letters 2013, 42
(8)
, 836-837. https://doi.org/10.1246/cl.130253
- W. D. Lubell, D. J. St-Cyr, J. Dufour-Gallant, R. Hopewell, N. Boutard, T. Kassem, A. Dörr, R. Zelli. 9.13.5 1H-Pyrroles (Update 2013). 2013https://doi.org/10.1055/sos-SD-109-00312
- Jan Bergman, Tomasz Janosik. Five‐Membered Heterocycles: Pyrrole and Related Systems. 2011, 269-375. https://doi.org/10.1002/9783527637737.ch4
- Lijuan Jiao, Erhong Hao, Frank R. Fronczek, M. Graça H. Vicente, Kevin M. Smith. Palladium(0) catalyzed 2,2′-bipyrrole syntheses. Journal of Porphyrins and Phthalocyanines 2011, 15
(05n06)
, 433-440. https://doi.org/10.1142/S1088424611003355
- Teruhisa Tsuchimoto. Selective Synthesis of β‐Alkylpyrroles. Chemistry – A European Journal 2011, 17
(15)
, 4064-4075. https://doi.org/10.1002/chem.201002248
- Teruhisa Tsuchimoto. Development of New Catalytic Reactions Based on Activation of Hydrocarbon Functional Groups by Lewis Acids. Journal of Synthetic Organic Chemistry, Japan 2011, 69
(8)
, 889-903. https://doi.org/10.5059/yukigoseikyokaishi.69.889
- Teruhisa Tsuchimoto, Motohiro Igarashi, Kazuki Aoki. Exclusive Synthesis of β‐Alkylpyrroles under Indium Catalysis: Carbonyl Compounds as Sources of Alkyl Groups. Chemistry – A European Journal 2010, 16
(30)
, 8975-8979. https://doi.org/10.1002/chem.201000733
- Lawrence T. Sein, Amanda F. Lashua. DFT and experimental study of N,N′-bis(3′-carboxy,4′-aminophenyl)-1,4-quinonediimine, a carboxyl substituted aniline trimer. Journal of Molecular Structure 2010, 977
(1-3)
, 220-229. https://doi.org/10.1016/j.molstruc.2010.05.038
- Martin Bröring, Silke Köhler, Thomas Ostapowicz, Markus Funk, Clemens Pietzonka. Preparation, Magnetic and Structural Study on Oxido‐Bridged Diiron(III) Complexes with Open‐Chain Tetrapyrrolic 2,2′‐Bidipyrrin Ligands. European Journal of Inorganic Chemistry 2009, 2009
(24)
, 3628-3635. https://doi.org/10.1002/ejic.200900405
- Edward B. Nikitin, Sanjeev K. Dey, David A. Lightner. Imploded bilirubins: synthesis and properties of 10-nor-mesobilirubin-XIIIα and analogs. Monatshefte für Chemie - Chemical Monthly 2009, 140
(1)
, 97-110. https://doi.org/10.1007/s00706-008-0034-1
- Jonathon S. Russel, Erin T. Pelkey. Chapter 5.2: Five-membered ring systems: pyrroles and benzo analogs. 2009, 122-151. https://doi.org/10.1016/S0959-6380(09)70010-8
- Liangfeng Fu, Gordon W. Gribble. A simple synthesis of 2,2′-bipyrroles from pyrrole. Tetrahedron Letters 2008, 49
(52)
, 7352-7354. https://doi.org/10.1016/j.tetlet.2008.10.034
- Lijuan Jiao, Erhong Hao, M. Graca H. Vicente, Kevin M. Smith. ChemInform Abstract: Improved Synthesis of Functionalized 2,2′‐Bipyrroles.. ChemInform 2008, 39
(7)
https://doi.org/10.1002/chin.200807102
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.