ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Nucleation and Growth Kinetics of Electrodeposited Sulfate-Doped Polypyrrole: Determination of the Diffusion Coefficient of SO42− in the Polymeric Membrane

View Author Information
Área Académica de Química, Laboratorio de Química Analítica, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, C.P. 42184, Hidalgo, México
Departamento de Materiales, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col Reynosa Tamaulipas, C.P. 02200, México, D.F
Laboratorio de Microanálisis, Centro Nacional de Metrología, km 4.5 de la Carretera a los Cues, municipio de El Marqués, Querétaro, México
* To whom correspondence should be addressed. E-mail: [email protected] and [email protected]
†On sabbatical leave. Permanent address: Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor.
Cite this: J. Phys. Chem. B 2010, 114, 30, 9737–9743
Publication Date (Web):July 15, 2010
https://doi.org/10.1021/jp102676q
Copyright © 2010 American Chemical Society

    Article Views

    890

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    A kinetic study for the electrosynthesis of polypyrrole (Ppy) doped with SO42− ions is presented. Ppy films were electrochemically polymerized onto a graphite-epoxy resin electrode. Experimental current density transients (jt) were obtained for three different potentiometric behaviors: anionic, cationic, and a combination. Theoretical models were used to fit the experimental jt data to determine the nucleation and growth processes controlling the polymer synthesis. It was encountered that, in all cases, pyrrole electropolimerization involves two concomitant processes, namely, a Ppy diffusion limited multiple 3D nucleation and growth and pyrrole electro-oxidation on the growing surface of the Ppy nuclei. SEM analysis of the electrodes surfaces reveals that Ppy deposition occurred over most of the electrode surface by multiple nucleation of hemispheres, as the theoretical model used for the analysis of the current transients required. Hemispherical particles formed the polymeric film displaying different sizes. The order for the particle size was as follows: anionic > anionic−cationic > cationic. These results are congruent with those obtained by theoretical analysis of the corresponding current transients. Analysis of the impedance measurements recorded on the anionic Ppy film, immersed in an aqueous solution with different sulfate ion concentrations evidenced that SO42− ions diffuse through the Ppy film provoking a decrease of its electrical resistance and an increase of its dielectric constant. From the Warburg impedance coefficient, the sulfate coefficient of diffusion in the Ppy film was 1.38 × 10−9 cm2 s−1.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 42 publications.

    1. L. Juárez-Marmolejo, B. Maldonado-Teodocio, M. G. Montes de Oca-Yemha, M. Romero-Romo, M. T. Ramírez-Silva, E. M. Arce-Estrada, P. Morales-Gil, J. Mostany, M. Palomar-Pardavé. Mechanism and Kinetics of Palladium Nanoparticles Electrochemical Formation onto Glassy Carbon, from a Deep Eutectic Solvent (Reline). The Journal of Physical Chemistry B 2020, 124 (19) , 3973-3983. https://doi.org/10.1021/acs.jpcb.0c01014
    2. Chen Chen, Kan Li, Chen Li, Tonghua Sun, Jinping Jia. Combination of Pd–Cu Catalysis and Electrolytic H2 Evolution for Selective Nitrate Reduction Using Protonated Polypyrrole as a Cathode. Environmental Science & Technology 2019, 53 (23) , 13868-13877. https://doi.org/10.1021/acs.est.9b04447
    3. Bruna M. Hryniewicz, Marcio Vidotti. PEDOT Nanotubes Electrochemically Synthesized on Flexible Substrates: Enhancement of Supercapacitive and Electrocatalytic Properties. ACS Applied Nano Materials 2018, 1 (8) , 3913-3924. https://doi.org/10.1021/acsanm.8b00694
    4. Alicia Prados, Rocío Ranchal. Electrodeposition of Bi Thin Films on n-GaAs(111)B. I. Correlation between the Overpotential and the Nucleation Process. The Journal of Physical Chemistry C 2018, 122 (16) , 8874-8885. https://doi.org/10.1021/acs.jpcc.8b01838
    5. Antonio Hernández-Espejel, Manuel Palomar-Pardavé, Román Cabrera-Sierra, Mario Romero-Romo, María Teresa Ramírez-Silva, and Elsa M. Arce-Estrada . Kinetics and Mechanism of the Electrochemical Formation of Iron Oxidation Products on Steel Immersed in Sour Acid Media. The Journal of Physical Chemistry B 2011, 115 (8) , 1833-1841. https://doi.org/10.1021/jp106851b
    6. Tatiana Lima Valerio, Camilla K. Boaron, Luís F. Marchesi, Bruno José G. da Silva, Marcio Vidotti. Interfacial characterization of poly(pyrrole) films doped with SiO2 nanoparticles and their use as electrosorptive phase of caffeine. Electrochimica Acta 2024, 474 , 143583. https://doi.org/10.1016/j.electacta.2023.143583
    7. Beibei Yang, Guoli Zhang, Jiayu Dong, Shaochun Tang, Lifang Zhang, Zhengguang Wu, Duan Bin, Yaqiong Song, Hongbin Lu. A Ti3C2Tx-carbon black-acrylic epoxy coating for 304SS bipolar plates with enhanced corrosion resistant and conductivity. International Journal of Hydrogen Energy 2022, 47 (80) , 34244-34256. https://doi.org/10.1016/j.ijhydene.2022.08.010
    8. Luan Pereira Camargo, Bruna M. Hryniewicz, Marcio Vidotti, Luiz Henrique Dall’Antonia. Modified Electrodes Surface with Inorganic Oxides and Conducting Polymers. 2022, 345-359. https://doi.org/10.1007/978-3-030-82381-8_19
    9. Shuzhi Diao, Yiyong Wang, Hui Jin, Jidong Li, Xianglin Liu. Effect of Interaction between SDS and Tween 80 on Nucleation Behavior of Electrodeposited Copper Powder. International Journal of Electrochemical Science 2020, 15 (12) , 11868-11885. https://doi.org/10.20964/2020.12.53
    10. Shuzhi Diao, Yiyong Wang, Hui Jin. Electronucleation mechanism of copper in wastewater by controlled electrodeposition analysis. RSC Advances 2020, 10 (63) , 38683-38694. https://doi.org/10.1039/D0RA07380F
    11. Junjian Niu, Wenjun Yan, Juan Du, Xiaogang Hao, Fengbin Wang, Zhongde Wang, Guoqing Guan. An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater. Chemical Engineering Journal 2020, 389 , 124498. https://doi.org/10.1016/j.cej.2020.124498
    12. Subrata Mondal, N. Aravindan, M.V. Sangaranarayanan. Controlled growth of polypyrrole microtubes on disposable pencil graphite electrode and their supercapacitor behavior. Electrochimica Acta 2019, 324 , 134875. https://doi.org/10.1016/j.electacta.2019.134875
    13. Alicia Prados, Rocío Ranchal. Use of light for the electrochemical deposition of Bi on n-GaAs substrates. Electrochimica Acta 2019, 316 , 113-124. https://doi.org/10.1016/j.electacta.2019.05.085
    14. Carmina Menchaca‐Campos, César García‐Pérez, Miriam Flores‐Domínguez, Miguel A. García‐Sánchez, M.A. Hernández‐Gallegos, Alba Covelo, Jorge Uruchurtu‐Chavarín. Synthesis, Characterization, and Applications of Polymer/Graphene Oxide Composite Materials. 2019, 541-573. https://doi.org/10.1002/9781119468455.ch70
    15. Michael A. Smirnov, Maria P. Sokolova, Natalya V. Bobrova, Alexander M. Toikka, Pierfrancesco Morganti, Erkki Lahderanta. Synergistic effect of chitin nanofibers and polyacrylamide on electrochemical performance of their ternary composite with polypyrrole. Journal of Energy Chemistry 2018, 27 (3) , 843-853. https://doi.org/10.1016/j.jechem.2017.06.002
    16. Vandana P. Shinde. Study of water transport characteristics of poly(o-ethylaniline) coatings: corrosion mechanism. Ionics 2018, 24 (2) , 605-615. https://doi.org/10.1007/s11581-017-2213-8
    17. Cristina Dumitriu, Stefan Ioan Voicu, Alexandru Muhulet, Gheorghe Nechifor, Simona Popescu, Camelia Ungureanu, Andrea Carja, Florin Miculescu, Roxana Trusca, Cristian Pirvu. Production and characterization of cellulose acetate – titanium dioxide nanotubes membrane fraxiparinized through polydopamine for clinical applications. Carbohydrate Polymers 2018, 181 , 215-223. https://doi.org/10.1016/j.carbpol.2017.10.082
    18. Y.E. Firat, A. Peksoz. Efficiently two-stage synthesis and characterization of CuSe/Polypyrrole composite thin films. Journal of Alloys and Compounds 2017, 727 , 177-184. https://doi.org/10.1016/j.jallcom.2017.08.095
    19. Franciele Wolfart, Bruna M. Hryniewicz, Luís F. Marchesi, Elisa S. Orth, Deepak P. Dubal, Pedro Gómez-Romero, Marcio Vidotti. Direct electrodeposition of imidazole modified poly(pyrrole) copolymers: synthesis, characterization and supercapacitive properties. Electrochimica Acta 2017, 243 , 260-269. https://doi.org/10.1016/j.electacta.2017.05.082
    20. Maryam Hatami, Mahdi Yeganeh, Ahmad Keyvani, Mohsen Saremi, Reza Naderi. Electrochemical behavior of polypyrrole-coated AZ31 alloy modified by fluoride anions. Journal of Solid State Electrochemistry 2017, 21 (3) , 777-785. https://doi.org/10.1007/s10008-016-3422-1
    21. Jiguo Tu, Shubo Wang, Shijie Li, Chen Wang, Dongbai Sun, Shuqiang Jiao. The Effects of Anions Behaviors on Electrochemical Properties of Al/Graphite Rechargeable Aluminum-Ion Battery via Molten AlCl 3 -NaCl Liquid Electrolyte. Journal of The Electrochemical Society 2017, 164 (13) , A3292-A3302. https://doi.org/10.1149/2.1761713jes
    22. B. Alshammary, N. Casillas, R. B. Cook, J. Swingler, C. Ponce de León, F. C. Walsh. The importance of the film structure during self-powered ibuprofen salicylate drug release from polypyrrole electrodeposited on AZ31 Mg. Journal of Solid State Electrochemistry 2016, 20 (12) , 3375-3382. https://doi.org/10.1007/s10008-016-3288-2
    23. Stéphanie Carquigny, Boris Lakard, Sophie Lakard, Virginie Moutarlier, Jean-Yves Hihn, Lydie Viau. Investigation of pharmaceutically active ionic liquids as electrolyte for the electrosynthesis of polypyrrole and active component in controlled drug delivery. Electrochimica Acta 2016, 211 , 950-961. https://doi.org/10.1016/j.electacta.2016.06.080
    24. N. Aravindan, M.V. Sangaranarayanan. Influence of solvent composition on the anti-corrosion performance of copper–polypyrrole (Cu–PPy) coated 304 stainless steel. Progress in Organic Coatings 2016, 95 , 38-45. https://doi.org/10.1016/j.porgcoat.2016.02.008
    25. Franciele Wolfart, Deepak P. Dubal, Marcio Vidotti, Rudolf Holze, Pedro Gómez-Romero. Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methods. Journal of Solid State Electrochemistry 2016, 20 (4) , 901-910. https://doi.org/10.1007/s10008-015-2960-2
    26. Georgi Genchev, Karsten Cox, The Hai Tran, Adnan Sarfraz, Christoph Bosch, Michael Spiegel, Andreas Erbe. Metallic, oxygen-containing reaction products after polarisation of iron in H2S saturated saline solutions. Corrosion Science 2015, 98 , 725-736. https://doi.org/10.1016/j.corsci.2015.06.017
    27. Alessandra Gianoncelli, Ivonne Sgura, Patrizia Bocchetta, Deborah Lacitignola, Benedetto Bozzini. High‐lateral resolution X‐ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts. X-Ray Spectrometry 2015, 44 (4) , 263-275. https://doi.org/10.1002/xrs.2617
    28. Anita Hamilton, Carmel B. Breslin. The development of a novel urea sensor using polypyrrole. Electrochimica Acta 2014, 145 , 19-26. https://doi.org/10.1016/j.electacta.2014.08.052
    29. A. Castro-Beltran, C. Dominguez, D. Bahena-Uribe, S. Sepulveda-Guzman, R. Cruz-Silva. Effect of non-electroactive additives on the early stage pyrrole electropolymerization on indium tin oxide electrodes. Thin Solid Films 2014, 566 , 23-31. https://doi.org/10.1016/j.tsf.2014.07.014
    30. Su Cheol Han, Eun Gyoung Bae, Heatsal Lim, Myoungho Pyo. Non-crystalline oligopyrene as a cathode material with a high-voltage plateau for sodium ion batteries. Journal of Power Sources 2014, 254 , 73-79. https://doi.org/10.1016/j.jpowsour.2013.12.104
    31. María Ramírez-Silva, Manuel Palomar-Pardavé, Silvia Corona-Avendaño, Mario Romero-Romo, Georgina Alarcón-Angeles. Guest-Host Complex Formed between Ascorbic Acid and β-Cyclodextrin Immobilized on the Surface of an Electrode. Molecules 2014, 19 (5) , 5952-5964. https://doi.org/10.3390/molecules19055952
    32. Anita Hamilton, Carmel B. Breslin. The development of a highly sensitive urea sensor due to the formation of an inclusion complex between urea and sulfonated-β-cyclodextrin. Electrochimica Acta 2014, 125 , 250-257. https://doi.org/10.1016/j.electacta.2014.01.096
    33. M. Palomar-Pardavé, S. Corona-Avendaño, M. Romero-Romo, G. Alarcón-Angeles, A. Merkoçi, M. T. Ramírez-Silva. Supramolecular interaction of dopamine with β-cyclodextrin: An experimental and theoretical electrochemical study. Journal of Electroanalytical Chemistry 2014, 717-718 , 103-109. https://doi.org/10.1016/j.jelechem.2014.01.002
    34. Maria Grzeszczuk, Rabia Ozsakarya. Surface morphology and corresponding electrochemistry of polypyrrole films electrodeposited using a water miscible ionic liquid. RSC Adv. 2014, 4 (42) , 22214-22223. https://doi.org/10.1039/C4RA03497J
    35. S. Corona-Avendaño, M.T. Ramírez-Silva, M. Romero-Romo, A. Rojas-Hernández, M. Palomar-Pardavé. Influence of the HClO4 concentration on the β-CD electropolimerization over a carbon paste electrode and on dopamine's electrochemical response. Electrochimica Acta 2013, 89 , 854-860. https://doi.org/10.1016/j.electacta.2012.10.165
    36. Damian Kowalski, Patrik Schmuki. Advanced Geometries of PEDOT Formed in Titania Nanotubes. ChemPhysChem 2012, 13 (17) , 3790-3793. https://doi.org/10.1002/cphc.201200735
    37. Elizabeth Garfias-Garcia, Mario Romero-Romo, Maria Teresa Ramírez-Silva, Manuel Palomar-Pardavé. Overpotential Nucleation and Growth of Copper onto Polycrystalline and Single Crystal Gold Electrodes. International Journal of Electrochemical Science 2012, 7 (4) , 3102-3114. https://doi.org/10.1016/S1452-3981(23)13938-1
    38. M. Palomar-Pardavé, M. Romero-Romo, H. Herrera-Hernández, M.A. Abreu-Quijano, Natalya V. Likhanova, J. Uruchurtu, J.M. Juárez-García. Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corrosion Science 2012, 54 , 231-243. https://doi.org/10.1016/j.corsci.2011.09.020
    39. U. Páramo-García, J.G. Ibanez, N. Batina. Electrochemical Modulation of the Thickness of Polypyrrole Films by Using Different Anionic Dopants. International Journal of Electrochemical Science 2011, 6 (11) , 5172-5188. https://doi.org/10.1016/S1452-3981(23)18397-0
    40. E. Sarmiento, J. Uruchurtu, J.G. González-Rodriguez, C. Menchaca, O. Sarmiento. Electrochemical Noise Analysis of Type 316L Stainless Steel in a LiBr + Ethylene Glycol + H2O Solution. Corrosion 2011, 67 (10) , 105004-105004-8. https://doi.org/10.5006/1.3647765
    41. L.A. Rodríguez-Bravo, M. Palomar-Pardavé, S. Corona-Avendaño, M. Romero-Romo, H. Herrera-Hernández, M.T. Ramírez-Silva, R. Escarela-Pérez. Electrochemical and SPR Characterization of a Polypyrrole-Modified Carbon Paste Electrode Useful for the Potentiostatic Quantification of Surfactants. International Journal of Electrochemical Science 2011, 6 (7) , 2730-2745. https://doi.org/10.1016/S1452-3981(23)18213-7
    42. T. de J. Licona-Sánchez, G.A. Álvarez-Romero, M. Palomar-Pardavé, C.A. Galán-Vidal, M.E. Páez-Hernández, M. T. Ramírez Silva, M. Romero-Romo. Influence of the Cation Nature of the Sulphate Salt on the Electrochemical Synthesis of Sulfate-Doped Polypyrrole. International Journal of Electrochemical Science 2011, 6 (5) , 1537-1549. https://doi.org/10.1016/S1452-3981(23)15091-7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect