ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond

View Author Information
3rd Physikalisches Institut, Research Center Scope and IQST, University of Stuttgart, 70569 Stuttgart, Germany
Experimentelle Physik III, Universität Dortmund, 44221 Dortmund, Germany
§ Sumitomo Electric Industries, Ltd., Itami, Hyogo, 664-0016 Japan
Research Center for Knowledge Communities, University of Tsukuba, Tsukuba, Ibaraki, 305-8550 Japan
Cite this: Nano Lett. 2013, 13, 6, 2738–2742
Publication Date (Web):May 30, 2013
https://doi.org/10.1021/nl401216y
Copyright © 2013 American Chemical Society

    Article Views

    10884

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications in the semiconductor industry and in material and life sciences. For example, probing temperature on the nanoscale with high precision can potentially be used to detect small, local temperature changes like those caused by chemical reactions or biochemical processes. However, precise nanoscale temperature measurements have not been realized so far owing to the lack of adequate probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on optically detected electron spin resonance in single atomic defects in diamonds. These diamond sensor sizes range from a micrometer down to a few tens of nanometers. We achieve a temperature noise floor of 5 mK/Hz1/2 for single defects in bulk sensors. Using doped nanodiamonds as sensors the temperature noise floor is 130 mK/Hz1/2 and accuracies down to 1 mK for nanocrystal sizes and therefore length scales of a few tens of nanometers. This combination of precision and position resolution, combined with the outstanding sensor photostability, should allow the measurement of the heat produced by chemical interactions involving a few or single molecules even in heterogeneous environments like cells.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    A more thorough description of the spin Hamiltonian, HPHT and nanodiamond samples, experimental setup, and simulations of nuclear spin bath influences. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 565 publications.

    1. Andrew M. Boyce, Hengming Li, Nathaniel C. Wilson, Deniz Acil, Amirhassan Shams-Ansari, Srivatsa Chakravarthi, Christian Pederson, Qixin Shen, Nicholas Yama, Kai-Mei C. Fu, Marko Loncar, Maiken H. Mikkelsen. Plasmonic Diamond Membranes for Ultrafast Silicon Vacancy Emission. Nano Letters 2024, 24 (12) , 3575-3580. https://doi.org/10.1021/acs.nanolett.3c04002
    2. Zhiyi Hu, Fengjian Jiang, Jingyan He, Yulin Dai, Ya Wang, Nanyang Xu, Jiangfeng Du. Four-Order Power Reduction in Nanoscale Electron–Nuclear Double Resonance with a Nitrogen-Vacancy Center in Diamonds. Nano Letters 2024, 24 (9) , 2846-2852. https://doi.org/10.1021/acs.nanolett.3c04822
    3. Benjamin Harrington, Ziyang Ye, Laura Signor, Andrea D. Pickel. Luminescence Thermometry Beyond the Biological Realm. ACS Nanoscience Au 2024, 4 (1) , 30-61. https://doi.org/10.1021/acsnanoscienceau.3c00051
    4. Meng-Qi Ma, Yun-Kun Wu, Zhi-Wei Liu, Han-Xiang Zang, Long-Kun Shan, Wang Jiang, Yong Liu, Xi-Feng Ren, Xiang-Dong Chen, Guang-Can Guo, Fang-Wen Sun. Integrated Manipulation and Addressing of Spin Defect in Diamond. Nano Letters 2024, 24 (5) , 1660-1666. https://doi.org/10.1021/acs.nanolett.3c04376
    5. Siyu Fan, Han Gao, Yue Zhang, Linyan Nie, Raquel Bártolo, Reinier Bron, Hélder A. Santos, Romana Schirhagl. Quantum Sensing of Free Radical Generation in Mitochondria of Single Heart Muscle Cells during Hypoxia and Reoxygenation. ACS Nano 2024, 18 (4) , 2982-2991. https://doi.org/10.1021/acsnano.3c07959
    6. Md Shakhawath Hossain, Miguel Bacaoco, Thi Ngoc Anh Mai, Guillaume Ponchon, Chaohao Chen, Lei Ding, Yongliang Chen, Evgeny Ekimov, Xiaoxue Xu, Alexander S. Solntsev, Toan Trong Tran. Fiber-Based Ratiometric Optical Thermometry with Silicon Vacancy in Microdiamonds. ACS Applied Optical Materials 2024, 2 (1) , 97-107. https://doi.org/10.1021/acsaom.3c00359
    7. Josh A. Zuber, Minghao Li, Marcel.li Grimau Puigibert, Jodok Happacher, Patrick Reiser, Brendan J. Shields, Patrick Maletinsky. Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures. Nano Letters 2023, 23 (23) , 10901-10907. https://doi.org/10.1021/acs.nanolett.3c03145
    8. Yubing Xu, Xin Wang, Shilin Liu, Yuzhu Pan, Abida Perveen, Damian Chinedu Onwudiwe, Omolola Esther Fayemi, Elias Emeka Elemike, Byung Seong Bae, Ying Zhu, Razika Zair Talaighil, Xiaobing Zhang, Jing Chen, Zhiwei Zhao, Qing Li, Wei Lei, Xiaobao Xu. Sensitive Thermography via Sensing Visible Photons Detected from the Manipulation of the Trap State in MAPbX3. ACS Applied Materials & Interfaces 2023, 15 (48) , 56526-56536. https://doi.org/10.1021/acsami.3c13305
    9. Qiushi Gu, Louise Shanahan, Jack W. Hart, Sophia Belser, Noah Shofer, Mete Atatüre, Helena S. Knowles. Simultaneous Nanorheometry and Nanothermometry Using Intracellular Diamond Quantum Sensors. ACS Nano 2023, 17 (20) , 20034-20042. https://doi.org/10.1021/acsnano.3c05285
    10. Nuan Lin, Koen van Zomeren, Teelkien van Veen, Aldona Mzyk, Yue Zhang, Xiaoling Zhou, Torsten Plosch, Uwe J. F. Tietge, Astrid Cantineau, Annemieke Hoek, Romana Schirhagl. Quantum Sensing of Free Radicals in Primary Human Granulosa Cells with Nanoscale Resolution. ACS Central Science 2023, 9 (9) , 1784-1798. https://doi.org/10.1021/acscentsci.3c00747
    11. Xinbing Jiang, Shaochong Zhu, Huan Yang, Yuxi Fei, Jiuhong Wang, Shujiang Ding. Combining CdTe/CdS/ZnS Quantum Dot Fluorescence Temperature Measurements with Double-Helix Point Spread Function Axial Location for Intracellular 3D Thermograms. ACS Applied Nano Materials 2023, 6 (18) , 17071-17082. https://doi.org/10.1021/acsanm.3c03252
    12. Runrun Li, Thea A. Vedelaar, Alina Sigaeva, Yue Zhang, Kaiqi Wu, Hui Wang, Xixi Wu, Peter Olinga, Małgorzata K. Wlodarzyk-Biegun, Romana Schirhagl. Fluorescent Nanodiamonds for Tracking Single Polymer Particles in Cells and Tissues. Analytical Chemistry 2023, 95 (35) , 13046-13054. https://doi.org/10.1021/acs.analchem.3c01452
    13. Yongliang Chen, Simon White, Evgeny A. Ekimov, Carlo Bradac, Milos Toth, Igor Aharonovich, Toan Trong Tran. Ultralow-Power Cryogenic Thermometry Based on Optical-Transition Broadening of a Two-Level System in Diamond. ACS Photonics 2023, 10 (8) , 2481-2487. https://doi.org/10.1021/acsphotonics.2c01622
    14. S. Fan, L. Nie, Y. Zhang, E. Ustyantseva, W. Woudstra, H. H. Kampinga, R. Schirhagl. Diamond Quantum Sensing Revealing the Relation between Free Radicals and Huntington’s Disease. ACS Central Science 2023, 9 (7) , 1427-1436. https://doi.org/10.1021/acscentsci.3c00513
    15. Hao Tang, Ariel Rebekah Barr, Guoqing Wang, Paola Cappellaro, Ju Li. First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects. The Journal of Physical Chemistry Letters 2023, 14 (13) , 3266-3273. https://doi.org/10.1021/acs.jpclett.3c00314
    16. Jiahua Zhang, Hongsen He, Tongtong Zhang, Lingzhi Wang, Madhav Gupta, Jixiang Jing, Zhongqiang Wang, Qi Wang, Kwai Hei Li, Kenneth Kin-Yip Wong, Zhiqin Chu. Two-Photon Excitation of Silicon-Vacancy Centers in Nanodiamonds for All-Optical Thermometry with a Noise Floor of 6.6 mK·Hz–1/2. The Journal of Physical Chemistry C 2023, 127 (6) , 3013-3019. https://doi.org/10.1021/acs.jpcc.2c06966
    17. Yongliang Chen, Chi Li, Tieshan Yang, Evgeny A. Ekimov, Carlo Bradac, Son Tung Ha, Milos Toth, Igor Aharonovich, Toan Trong Tran. Real-Time Ratiometric Optical Nanoscale Thermometry. ACS Nano 2023, 17 (3) , 2725-2736. https://doi.org/10.1021/acsnano.2c10974
    18. Gang-Qin Liu, Ren-Bao Liu, Quan Li. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Accounts of Chemical Research 2023, 56 (2) , 95-105. https://doi.org/10.1021/acs.accounts.2c00576
    19. Rokshana Sharmin, Anggrek C. Nusantara, Linyan Nie, Kaiqi Wu, Arturo Elias Llumbet, Willem Woudstra, Aldona Mzyk, Romana Schirhagl. Intracellular Quantum Sensing of Free-Radical Generation Induced by Acetaminophen (APAP) in the Cytosol, in Mitochondria and the Nucleus of Macrophages. ACS Sensors 2022, 7 (11) , 3326-3334. https://doi.org/10.1021/acssensors.2c01272
    20. Alina Sigaeva, Neda Norouzi, Romana Schirhagl. Intracellular Relaxometry, Challenges, and Future Directions. ACS Central Science 2022, 8 (11) , 1484-1489. https://doi.org/10.1021/acscentsci.2c00976
    21. Elvin V. Salerno, Albano N. Carneiro Neto, Svetlana V. Eliseeva, Miguel A. Hernández-Rodríguez, Jacob C. Lutter, Timothée Lathion, Jeff W. Kampf, Stéphane Petoud, Luis D. Carlos, Vincent L. Pecoraro. Tunable Optical Molecular Thermometers Based on Metallacrowns. Journal of the American Chemical Society 2022, 144 (40) , 18259-18271. https://doi.org/10.1021/jacs.2c04821
    22. Lingzhi Wang, Yong Hou, Tongtong Zhang, Xi Wei, Yan Zhou, Dangyuan Lei, Qiang Wei, Yuan Lin, Zhiqin Chu. All-Optical Modulation of Single Defects in Nanodiamonds: Revealing Rotational and Translational Motions in Cell Traction Force Fields. Nano Letters 2022, 22 (18) , 7714-7723. https://doi.org/10.1021/acs.nanolett.2c02232
    23. Zheng Wang, Jintao Zhang, Xiaojuan Feng, Li Xing. Microwave Heating Effect on Diamond Samples of Nitrogen-Vacancy Centers. ACS Omega 2022, 7 (35) , 31538-31543. https://doi.org/10.1021/acsomega.2c04232
    24. Kai Lu, Tetsuichi Wazawa, Joe Sakamoto, Cong Quang Vu, Masahiro Nakano, Yasuhiro Kamei, Takeharu Nagai. Intracellular Heat Transfer and Thermal Property Revealed by Kilohertz Temperature Imaging with a Genetically Encoded Nanothermometer. Nano Letters 2022, 22 (14) , 5698-5707. https://doi.org/10.1021/acs.nanolett.2c00608
    25. Asma Akther, Ella P. Walsh, Philipp Reineck, Brant C. Gibson, Takeshi Ohshima, Hiroshi Abe, Gawain McColl, Nicole L. Jenkins, Liam T. Hall, David A. Simpson, Amgad R. Rezk, Leslie Y. Yeo. Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. Analytical Chemistry 2021, 93 (48) , 16133-16141. https://doi.org/10.1021/acs.analchem.1c03893
    26. Roman A. Shugayev, Scott E. Crawford, John P. Baltrus, Nathan A. Diemler, James E. Ellis, Ki-Joong Kim, Patricia C. Cvetic. Synthesis and Quantum Metrology of Metal–Organic Framework-Coated Nanodiamonds Containing Nitrogen Vacancy Centers. Chemistry of Materials 2021, 33 (16) , 6365-6373. https://doi.org/10.1021/acs.chemmater.1c01386
    27. Elena N. Gerasimova, Vitaly V. Yaroshenko, Pavel M. Talianov, Oleksii O. Peltek, Mikhail A. Baranov, Polina V. Kapitanova, Dmitry A. Zuev, Alexander S. Timin, Mikhail V. Zyuzin. Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds. ACS Applied Materials & Interfaces 2021, 13 (31) , 36737-36746. https://doi.org/10.1021/acsami.1c05252
    28. Tongtong Zhang, Goutam Pramanik, Kai Zhang, Michal Gulka, Lingzhi Wang, Jixiang Jing, Feng Xu, Zifu Li, Qiang Wei, Petr Cigler, Zhiqin Chu. Toward Quantitative Bio-sensing with Nitrogen–Vacancy Center in Diamond. ACS Sensors 2021, 6 (6) , 2077-2107. https://doi.org/10.1021/acssensors.1c00415
    29. Yingke Wu, Md Noor A Alam, Priyadharshini Balasubramanian, Anna Ermakova, Stephan Fischer, Holger Barth, Manfred Wagner, Marco Raabe, Fedor Jelezko, Tanja Weil. Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing. Nano Letters 2021, 21 (9) , 3780-3788. https://doi.org/10.1021/acs.nanolett.1c00043
    30. Guillaume Baffou. Anti-Stokes Thermometry in Nanoplasmonics. ACS Nano 2021, 15 (4) , 5785-5792. https://doi.org/10.1021/acsnano.1c01112
    31. Michael S. J. Barson, Lachlan M. Oberg, Liam P. McGuinness, Andrej Denisenko, Neil B. Manson, Jörg Wrachtrup, Marcus W. Doherty. Nanoscale Vector Electric Field Imaging Using a Single Electron Spin. Nano Letters 2021, 21 (7) , 2962-2967. https://doi.org/10.1021/acs.nanolett.1c00082
    32. William A. Hubbard, Matthew Mecklenburg, Jared J. Lodico, Yueyun Chen, Xin Yi Ling, Roshni Patil, W. Andrew Kessel, Graydon J. K. Flatt, Ho Leung Chan, Bozo Vareskic, Gurleen Bal, Brian Zutter, B. C. Regan. Electron-Transparent Thermoelectric Coolers Demonstrated with Nanoparticle and Condensation Thermometry. ACS Nano 2020, 14 (9) , 11510-11517. https://doi.org/10.1021/acsnano.0c03958
    33. Mikhail Y. Shalaginov, Simeon I. Bogdanov, Alexei S. Lagutchev, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev. On-Chip Single-Layer Integration of Diamond Spins with Microwave and Plasmonic Channels. ACS Photonics 2020, 7 (8) , 2018-2026. https://doi.org/10.1021/acsphotonics.0c00325
    34. Michael N. R. Ashfold, Jonathan P. Goss, Ben L. Green, Paul W. May, Mark E. Newton, Chloe V. Peaker. Nitrogen in Diamond. Chemical Reviews 2020, 120 (12) , 5745-5794. https://doi.org/10.1021/acs.chemrev.9b00518
    35. Christopher Foy, Lenan Zhang, Matthew E. Trusheim, Kevin R. Bagnall, Michael Walsh, Evelyn N. Wang, Dirk R. Englund. Wide-Field Magnetic Field and Temperature Imaging Using Nanoscale Quantum Sensors. ACS Applied Materials & Interfaces 2020, 12 (23) , 26525-26533. https://doi.org/10.1021/acsami.0c01545
    36. Takahiro Fujisaku, Ryotaro Tanabe, Shinobu Onoda, Ryou Kubota, Takuya F. Segawa, Frederick T.-K. So, Takeshi Ohshima, Itaru Hamachi, Masahiro Shirakawa, Ryuji Igarashi. pH Nanosensor Using Electronic Spins in Diamond. ACS Nano 2019, 13 (10) , 11726-11732. https://doi.org/10.1021/acsnano.9b05342
    37. Changhao Li, Mo Chen, Dominika Lyzwa, Paola Cappellaro. All-Optical Quantum Sensing of Rotational Brownian Motion of Magnetic Molecules. Nano Letters 2019, 19 (10) , 7342-7348. https://doi.org/10.1021/acs.nanolett.9b02960
    38. Alexandre Tallaire, Ovidiu Brinza, Mary De Feudis, Alban Ferrier, Nadia Touati, Laurent Binet, Louis Nicolas, Tom Delord, Gabriel Hétet, Tobias Herzig, Sébastien Pezzagna, Philippe Goldner, Jocelyn Achard. Synthesis of Loose Nanodiamonds Containing Nitrogen-Vacancy Centers for Magnetic and Thermal Sensing. ACS Applied Nano Materials 2019, 2 (9) , 5952-5962. https://doi.org/10.1021/acsanm.9b01395
    39. Liselotte Jauffred, Akbar Samadi, Henrik Klingberg, Poul Martin Bendix, Lene B. Oddershede. Plasmonic Heating of Nanostructures. Chemical Reviews 2019, 119 (13) , 8087-8130. https://doi.org/10.1021/acs.chemrev.8b00738
    40. F. Gorrini, R. Giri, C. E. Avalos, S. Tambalo, S. Mannucci, L. Basso, N. Bazzanella, C. Dorigoni, M. Cazzanelli, P. Marzola, A. Miotello, A. Bifone. Fast and Sensitive Detection of Paramagnetic Species Using Coupled Charge and Spin Dynamics in Strongly Fluorescent Nanodiamonds. ACS Applied Materials & Interfaces 2019, 11 (27) , 24412-24422. https://doi.org/10.1021/acsami.9b05779
    41. Stephanie K. Loeb, Jun Kim, Chenxi Jiang, Lawrence Stephen Early, Haoran Wei, Qilin Li, Jae-Hong Kim. Nanoparticle Enhanced Interfacial Solar Photothermal Water Disinfection Demonstrated in 3-D Printed Flow-Through Reactors. Environmental Science & Technology 2019, 53 (13) , 7621-7631. https://doi.org/10.1021/acs.est.9b01142
    42. Ryuta Tsukahara, Masazumi Fujiwara, Yoshihiko Sera, Yushi Nishimura, Yuko Sugai, Christian Jentgens, Yoshio Teki, Hideki Hashimoto, Shinichi Shikata. Removing Non-Size-Dependent Electron Spin Decoherence of Nanodiamond Quantum Sensors by Aerobic Oxidation. ACS Applied Nano Materials 2019, 2 (6) , 3701-3710. https://doi.org/10.1021/acsanm.9b00614
    43. Yuen Yung Hui, Oliver Y. Chen, Terumitsu Azuma, Be-Ming Chang, Feng-Jen Hsieh, Huan-Cheng Chang. All-Optical Thermometry with Nitrogen-Vacancy Centers in Nanodiamond-Embedded Polymer Films. The Journal of Physical Chemistry C 2019, 123 (24) , 15366-15374. https://doi.org/10.1021/acs.jpcc.9b04496
    44. Sumin Choi, Viatcheslav N. Agafonov, Valery A. Davydov, Taras Plakhotnik. Ultrasensitive All-Optical Thermometry Using Nanodiamonds with a High Concentration of Silicon-Vacancy Centers and Multiparametric Data Analysis. ACS Photonics 2019, 6 (6) , 1387-1392. https://doi.org/10.1021/acsphotonics.9b00468
    45. Miu Shan Chan, Renate Landig, Joonhee Choi, Hengyun Zhou, Xing Liao, Mikhail D. Lukin, Hongkun Park, Pik Kwan Lo. Stepwise Ligand-induced Self-assembly for Facile Fabrication of Nanodiamond–Gold Nanoparticle Dimers via Noncovalent Biotin–Streptavidin Interactions. Nano Letters 2019, 19 (3) , 2020-2026. https://doi.org/10.1021/acs.nanolett.9b00113
    46. Sumin Choi, Victor Leong, Gandhi Alagappan, Leonid Krivitsky. Enhancing Optical Readout from Diamond AFM Tips for Quantum Nanosensing. ACS Photonics 2018, 5 (11) , 4244-4248. https://doi.org/10.1021/acsphotonics.8b00921
    47. Lachlan W. Russell, Simon G. Ralph, Kazuma Wittick, Jean-Philippe Tetienne, David A. Simpson, Peter J. Reece. Manipulating the Quantum Coherence of Optically Trapped Nanodiamonds. ACS Photonics 2018, 5 (11) , 4491-4496. https://doi.org/10.1021/acsphotonics.8b00946
    48. Kiran J. van der Laan, Julie Naulleau, Viraj G. Damle, Alina Sigaeva, Nicolas Jamot, Felipe P. Perona-Martinez, Mayeul Chipaux, Romana Schirhagl. Toward Using Fluorescent Nanodiamonds To Study Chronological Aging in Saccharomyces cerevisiae. Analytical Chemistry 2018, 90 (22) , 13506-13513. https://doi.org/10.1021/acs.analchem.8b03431
    49. Paolo Andrich, Jiajing Li, Xiaoying Liu, F. Joseph Heremans, Paul F. Nealey, David D. Awschalom. Microscale-Resolution Thermal Mapping Using a Flexible Platform of Patterned Quantum Sensors. Nano Letters 2018, 18 (8) , 4684-4690. https://doi.org/10.1021/acs.nanolett.8b00895
    50. Tingting Zheng, Felipe Perona Martínez, Ingeborg Maria Storm, Wolf Rombouts, Joris Sprakel, Romana Schirhagl, and Renko de Vries . Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Analytical Chemistry 2017, 89 (23) , 12812-12820. https://doi.org/10.1021/acs.analchem.7b03236
    51. Alexander I. Shames, Alex I. Smirnov, Sergey Milikisiyants, Evgeny O. Danilov, Nicholas Nunn, Gary McGuire, Marco D. Torelli, and Olga Shenderova . Fluence-Dependent Evolution of Paramagnetic Triplet Centers in e-Beam Irradiated Microcrystalline Ib Type HPHT Diamond. The Journal of Physical Chemistry C 2017, 121 (40) , 22335-22346. https://doi.org/10.1021/acs.jpcc.7b06514
    52. Michael S. J. Barson, Phani Peddibhotla, Preeti Ovartchaiyapong, Kumaravelu Ganesan, Richard L. Taylor, Matthew Gebert, Zoe Mielens, Berndt Koslowski, David A. Simpson, Liam P. McGuinness, Jeffrey McCallum, Steven Prawer, Shinobu Onoda, Takeshi Ohshima, Ania C. Bleszynski Jayich, Fedor Jelezko, Neil B. Manson, and Marcus W. Doherty . Nanomechanical Sensing Using Spins in Diamond. Nano Letters 2017, 17 (3) , 1496-1503. https://doi.org/10.1021/acs.nanolett.6b04544
    53. Takayuki Iwasaki, Wataru Naruki, Kosuke Tahara, Toshiharu Makino, Hiromitsu Kato, Masahiko Ogura, Daisuke Takeuchi, Satoshi Yamasaki, and Mutsuko Hatano . Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins. ACS Nano 2017, 11 (2) , 1238-1245. https://doi.org/10.1021/acsnano.6b04460
    54. Weina Liu, Boris Naydenov, Sabyasachi Chakrabortty, Bettina Wuensch, Kristina Hübner, Sandra Ritz, Helmut Cölfen, Holger Barth, Kaloian Koynov, Haoyuan Qi, Robert Leiter, Rolf Reuter, Jörg Wrachtrup, Felix Boldt, Jonas Scheuer, Ute Kaiser, Miguel Sison, Theo Lasser, Philip Tinnefeld, Fedor Jelezko, Paul Walther, Yuzhou Wu, and Tanja Weil . Fluorescent Nanodiamond–Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging. Nano Letters 2016, 16 (10) , 6236-6244. https://doi.org/10.1021/acs.nanolett.6b02456
    55. Youshen Wu, Jiajun Liu, Jingwen Ma, Yongchun Liu, Ya Wang, and Daocheng Wu . Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry. ACS Applied Materials & Interfaces 2016, 8 (23) , 14396-14405. https://doi.org/10.1021/acsami.6b03366
    56. Kerem Bray, Russell Sandstrom, Christopher Elbadawi, Martin Fischer, Matthias Schreck, Olga Shimoni, Charlene Lobo, Milos Toth, and Igor Aharonovich . Localization of Narrowband Single Photon Emitters in Nanodiamonds. ACS Applied Materials & Interfaces 2016, 8 (11) , 7590-7594. https://doi.org/10.1021/acsami.6b00466
    57. Wesley Wei-Wen Hsiao, Yuen Yung Hui, Pei-Chang Tsai, and Huan-Cheng Chang . Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. Accounts of Chemical Research 2016, 49 (3) , 400-407. https://doi.org/10.1021/acs.accounts.5b00484
    58. Jean-Philippe Tetienne, Alain Lombard, David A. Simpson, Cameron Ritchie, Jianing Lu, Paul Mulvaney, and Lloyd C. L. Hollenberg . Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. Nano Letters 2016, 16 (1) , 326-333. https://doi.org/10.1021/acs.nanolett.5b03877
    59. Zixuan Chen, Xiaonan Shan, Yan Guan, Shaopeng Wang, Jun-Jie Zhu, and Nongjian Tao . Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy. ACS Nano 2015, 9 (12) , 11574-11581. https://doi.org/10.1021/acsnano.5b05306
    60. Zhongkui Zhao, Weizuo Li, Yitao Dai, Guifang Ge, Xinwen Guo, and Guiru Wang . Carbon Nitride Encapsulated Nanodiamond Hybrid with Improved Catalytic Performance for Clean and Energy-Saving Styrene Production via Direct Dehydrogenation of Ethylbenzene. ACS Sustainable Chemistry & Engineering 2015, 3 (12) , 3355-3364. https://doi.org/10.1021/acssuschemeng.5b01032
    61. Taras Plakhotnik, Haroon Aman, Shaohua Zhang, and Zhen Li . Super-Paramagnetic Particles Chemically Bound to Luminescent Diamond: Single Nanocrystals Probed with Optically Detected Magnetic Resonance. The Journal of Physical Chemistry C 2015, 119 (34) , 20119-20124. https://doi.org/10.1021/acs.jpcc.5b05297
    62. Yan-Kai Tzeng, Pei-Chang Tsai, Hsiou-Yuan Liu, Oliver Y. Chen, Hsiang Hsu, Fu-Goul Yee, Ming-Shien Chang, and Huan-Cheng Chang . Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Letters 2015, 15 (6) , 3945-3952. https://doi.org/10.1021/acs.nanolett.5b00836
    63. S. Ali Momenzadeh, Rainer J. Stöhr, Felipe Favaro de Oliveira, Andreas Brunner, Andrej Denisenko, Sen Yang, Friedemann Reinhard, and Jörg Wrachtrup . Nanoengineered Diamond Waveguide as a Robust Bright Platform for Nanomagnetometry Using Shallow Nitrogen Vacancy Centers. Nano Letters 2015, 15 (1) , 165-169. https://doi.org/10.1021/nl503326t
    64. Paolo Andrich, Benjamín J. Alemán, Jonathan C. Lee, Kenichi Ohno, Charles F. de las Casas, F. Joseph Heremans, Evelyn L. Hu, and David D. Awschalom . Engineered Micro- and Nanoscale Diamonds as Mobile Probes for High-Resolution Sensing in Fluid. Nano Letters 2014, 14 (9) , 4959-4964. https://doi.org/10.1021/nl501208s
    65. Taras Plakhotnik, Marcus W. Doherty, Jared H. Cole, Robert Chapman, and Neil B. Manson . All-Optical Thermometry and Thermal Properties of the Optically Detected Spin Resonances of the NV– Center in Nanodiamond. Nano Letters 2014, 14 (9) , 4989-4996. https://doi.org/10.1021/nl501841d
    66. Metin Kayci, Huan-Cheng Chang, and Aleksandra Radenovic . Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap. Nano Letters 2014, 14 (9) , 5335-5341. https://doi.org/10.1021/nl5023964
    67. Björn Corzilius, Vladimir K. Michaelis, Susanne A. Penzel, Enrico Ravera, Albert A. Smith, Claudio Luchinat, and Robert G. Griffin . Dynamic Nuclear Polarization of 1H, 13C, and 59Co in a Tris(ethylenediamine)cobalt(III) Crystalline Lattice Doped with Cr(III). Journal of the American Chemical Society 2014, 136 (33) , 11716-11727. https://doi.org/10.1021/ja5044374
    68. Moloud Kaviani, Peter Deák, Bálint Aradi, Thomas Frauenheim, Jyh-Pin Chou, and Adam Gali . Proper Surface Termination for Luminescent Near-Surface NV Centers in Diamond. Nano Letters 2014, 14 (8) , 4772-4777. https://doi.org/10.1021/nl501927y
    69. Tibor Szilvási and Adam Gali . Fluorine Modification of the Surface of Diamondoids: A Time-Dependent Density Functional Study. The Journal of Physical Chemistry C 2014, 118 (8) , 4410-4415. https://doi.org/10.1021/jp410290w
    70. Matthew E. Trusheim, Luozhou Li, Abdelghani Laraoui, Edward H. Chen, Hassaram Bakhru, Tim Schröder, Ophir Gaathon, Carlos A. Meriles, and Dirk Englund . Scalable Fabrication of High Purity Diamond Nanocrystals with Long-Spin-Coherence Nitrogen Vacancy Centers. Nano Letters 2014, 14 (1) , 32-36. https://doi.org/10.1021/nl402799u
    71. Ali Raza Mirza, Adam Zaman Chaudhry. Improving the estimation of environment parameters via a two-qubit scheme. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-57150-7
    72. . Fluorescent Molecular Thermometers. 2024, 17-107. https://doi.org/10.1002/9783527836840.ch2
    73. Jiayao Chen, Yunhan Luo, Jiajia Luo, Huanhuan Huang, Hongda Cheng, Gui-shi Liu, Lei Chen, Zhe Chen, Yaofei Chen. Magnetic-field-assisted optical fiber quantum temperature sensor with enhanced sensitivity. Optics Letters 2024, 49 (6) , 1421. https://doi.org/10.1364/OL.511061
    74. Tomasz Piasecki, Krzysztof Kwoka, Ewelina Gacka, Piotr Kunicki, Teodor Gotszalk. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices. Nanotechnology 2024, 35 (11) , 115502. https://doi.org/10.1088/1361-6528/ad13c0
    75. Musang Gong, Min Yu, Yaoming Chu, Wei Chen, Qingyun Cao, Ning Wang, Jianming Cai, Ralf Betzholz, Luigi Giannelli. Two-photon-transition superadiabatic passage in a nitrogen-vacancy center in diamond. Physical Review A 2024, 109 (3) https://doi.org/10.1103/PhysRevA.109.032626
    76. Ning Wang, Jianming Cai. Hybrid quantum sensing in diamond. Frontiers in Physics 2024, 12 https://doi.org/10.3389/fphy.2024.1320108
    77. Jens Pogorzelski, Ludwig Horsthemke, Jonas Homrighausen, Dennis Stiegekötter, Markus Gregor, Peter Glösekötter. Compact and Fully Integrated LED Quantum Sensor Based on NV Centers in Diamond. Sensors 2024, 24 (3) , 743. https://doi.org/10.3390/s24030743
    78. Musang Gong, Jiahe Xu, Min Yu, Liyin Zhang, Qipeng Li, Ning Wang, Jianming Cai. Hybrid diamond quantum sensor with submicrokelvin resolution under ambient conditions. Physical Review Applied 2024, 21 (2) https://doi.org/10.1103/PhysRevApplied.21.024053
    79. Shuang Zhao, Jinpeng Zou, Hanqi Xu, Qichuan Hu, Qiuju Han, Wenzhi Wu. Luminescent enhancement and multi-mode optical thermometry of erbium doped halide Cs2(Na/Ag)BiCl6 microcrystals. Journal of Rare Earths 2024, 141 https://doi.org/10.1016/j.jre.2024.01.017
    80. Michael K. Wojnar, Krishnendu Kundu, Arailym Kairalapova, Xiaoling Wang, Andrew Ozarowski, Timothy C. Berkelbach, Stephen Hill, Danna E. Freedman. Ligand field design enables quantum manipulation of spins in Ni 2+ complexes. Chemical Science 2024, 15 (4) , 1374-1383. https://doi.org/10.1039/D3SC04919A
    81. Tingpeng Luo, Felix A. Hahl, Julia Langer, Volker Cimalla, Lukas Lindner, Xavier Vidal, Marko Haertelt, Remi Blinder, Shinobu Onoda, Takeshi Ohshima, Jan Jeske. Absorption and birefringence study for reduced optical losses in diamond with high nitrogen-vacancy concentration. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2024, 382 (2265) https://doi.org/10.1098/rsta.2022.0314
    82. Min Li, Qi Zhang, Xi Kong, Zhijie Li, Zhiping Yang, Sheng Zhao, Zhuoyang Qin, Fei Kong, Sanyou Chen, Jia Su, Ke Ruan, Fazhan Shi, Jiangfeng Du. All‐Optical Thermometry Monitoring Biochemical Kinetics with NV Centers in Diamond. Advanced Quantum Technologies 2024, 21 https://doi.org/10.1002/qute.202300293
    83. Maggie Wang, Michael Caouette-Mansour, Adrian Solyom, Lilian Childress. Comparing continuous and pulsed nitrogen-vacancy DC magnetometry in the optical-power-limited regime. Journal of the Optical Society of America B 2024, 41 (1) , 62. https://doi.org/10.1364/JOSAB.502566
    84. S Castelletto, C T-K Lew, Wu-Xi Lin, Jin-Shi Xu. Quantum systems in silicon carbide for sensing applications. Reports on Progress in Physics 2024, 87 (1) , 014501. https://doi.org/10.1088/1361-6633/ad10b3
    85. Qidi Hu, Luheng Cheng, Yushan Liu, Xinyi Zhu, Yu Tian, Nanyang Xu. Multipoint Lock-in Detection for Diamond Nitrogen-Vacancy Magnetometry Using DDS-Based Frequency-Shift Keying. Micromachines 2024, 15 (1) , 14. https://doi.org/10.3390/mi15010014
    86. Zhiying Song, Heng Yuan, Pengcheng Fan, Mingxin Li, Jihongbo Shen, Sixian Wang, Guodong Bian. Enhancing fluorescence of diamond NV− centers for quantum sensing: A multi-layer optical antireflection coating. Diamond and Related Materials 2024, 141 , 110584. https://doi.org/10.1016/j.diamond.2023.110584
    87. Jun-ichi Inoue. Dynamic frequency shift in NV − center in diamond induced by anisotropic in-plane vacuum fluctuation. Japanese Journal of Applied Physics 2024, 63 (1) , 011003. https://doi.org/10.35848/1347-4065/ad1719
    88. Xinyi Zhu, Hao Wu, Bao Chen, Tongpo Yu, Peng Qian, Jing-Wei Fan, Bing Chen. Joint quantum sensing of vector magnetic field and temperature with nitrogen-vacancy centers in diamond. Applied Physics Letters 2023, 123 (24) https://doi.org/10.1063/5.0174016
    89. Ruqiang Dou, Zan Li, Guoli Zhu, Chao Lin, Biao Wang. Towards interfacial nanothermometry in chemical reactions by total internal reflection wide-field diamond microscopy. Diamond and Related Materials 2023, 140 , 110444. https://doi.org/10.1016/j.diamond.2023.110444
    90. Shichen Zhang, Ke Bian, Ying Jiang. Perspective: nanoscale electric sensing and imaging based on quantum sensors. Quantum Frontiers 2023, 2 (1) https://doi.org/10.1007/s44214-023-00045-x
    91. Analia Zwick, Gonzalo A. Álvarez. Quantum sensing tools to characterize physical, chemical and biological processes with magnetic resonance. Journal of Magnetic Resonance Open 2023, 16-17 , 100113. https://doi.org/10.1016/j.jmro.2023.100113
    92. Ji Guo, Ziyan Li, Ning Zhang, Qiang Guo, Guanxue Wang, Xiumin Gao, Songlin Zhuang. Controlled Polarized Optical Excitation Method on Ensembles of Nitrogen‐Vacancy Centers in Diamonds. Advanced Quantum Technologies 2023, 6 (12) https://doi.org/10.1002/qute.202300122
    93. Rosalía López‐Méndez, Javier Reguera, Alexandre Fromain, Esraa Samy Abu Serea, Eva Céspedes, Francisco Jose Teran, Fangyuan Zheng, Ana Parente, Miguel Ángel García, Emiliano Fonda, Julio Camarero, Claire Wilhelm, Álvaro Muñoz‐Noval, Ana Espinosa. X‐Ray Nanothermometry of Nanoparticles in Tumor‐Mimicking Tissues under Photothermia. Advanced Healthcare Materials 2023, 12 (31) https://doi.org/10.1002/adhm.202301863
    94. Xiaosong Deng, Ning Kang, Zhiyong Zhang. Carbon-based cryoelectronics: graphene and carbon nanotube. Chip 2023, 2 (4) , 100064. https://doi.org/10.1016/j.chip.2023.100064
    95. Hui Yang, Guo-Bin Chen, Xu-Tong Zhao, Fei-Yue He, Guan-Xiang Du. High Spatial Resolution Thermometer Microprobe Based on the Nitrogen-Vacancy Centers Ensemble in the Diamond Particle With Tapered Fiber. IEEE Sensors Journal 2023, 23 (23) , 28633-28639. https://doi.org/10.1109/JSEN.2023.3325832
    96. Qihui Liu, Fei Xie, Xiao Peng, Yuqiang Hu, Nan Wang, Yonggui Zhang, Yang Wang, Lingyun Li, Hao Chen, Jiangong Cheng, Zhenyu Wu. Millimeter‐Scale Temperature Self‐Calibrated Diamond‐Based Quantum Sensor for High‐Precision Current Sensing. Advanced Quantum Technologies 2023, 6 (11) https://doi.org/10.1002/qute.202300210
    97. Runchuan Ye, Yunpeng Zhai, Yushan Liu, Xue Lin, Nanyang Xu. An field programmable gate array (FPGA)-based device for charge-state readout of nitrogen-vacancy (NV) center in diamond with nanosecond feedback speed. AIP Advances 2023, 13 (11) https://doi.org/10.1063/5.0154343
    98. Xin Li, Qi Wang, Wei Gao, Ziyang Shi, Hao Guo, Zhengjie Luo, Zhonghao Li, Huanfei Wen, Zongmin Ma, Jun Tang, Jun Liu. Extremely low-frequency magnetic spectrum measurement method based on the NV center in diamond. Japanese Journal of Applied Physics 2023, 62 (11) , 116501. https://doi.org/10.35848/1347-4065/ad034f
    99. Masanori Fujiwara, Haining Fu, Nene Hariki, Izuru Ohki, Yuto Makino, Ming Liu, Akihiko Tsurui, Taro Yoshikawa, Masahiro Nishikawa, Norikazu Mizuochi. Germanium-vacancy centers in detonation nanodiamond for all-optical nanoscale thermometry. Applied Physics Letters 2023, 123 (18) https://doi.org/10.1063/5.0168194
    100. Mingzhe Liu, Xin Zhao, Tianyu Xie, Shaoyi Xu, Fazhan Shi, Chang-Kui Duan. First-principles investigation of the impact of stress and lattice vibration on the hyperfine interactions of the nitrogen-vacancy center in diamond. Physical Review B 2023, 108 (15) https://doi.org/10.1103/PhysRevB.108.155150
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect