ACS Publications. Most Trusted. Most Cited. Most Read
Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core–Shell Tandem Photoanodes
My Activity
    Letter

    Photoelectrochemical Behavior of Hierarchically Structured Si/WO3 Core–Shell Tandem Photoanodes
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Chemistry and Chemical Engineering, Beckman Institute, Kavli Nanoscience Institute, and the Joint Center for Artificial Photosynthesis, California Institute of Technology, 210 Noyes Laboratory, Pasadena, California 91125, United States
    Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
    *E-mail: (N.S.L.) [email protected]
    *E-mail: (P.V.B.) [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 5, 2310–2317
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl404623t
    Published March 28, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    WO3 thin films have been deposited in a hierarchically structured core–shell morphology, with the cores consisting of an array of Si microwires and the shells consisting of a controlled morphology WO3 layer. Porosity was introduced into the WO3 outer shell by using a self-assembled microsphere colloidal crystal as a mask during the deposition of the WO3 shell. Compared to conformal, unstructured WO3 shells on Si microwires, the hierarchically structured core–shell photoanodes exhibited enhanced near-visible spectral response behavior, due to increased light absorption and reduced distances over which photogenerated carriers were collected. The use of structured substrates also improved the growth rate of microsphere-based colloidal crystals and suggests strategies for the use of colloidal materials in large-scale applications.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    A detailed description of the materials, synthetic methods, and characterization/simulation protocols of plain and porous core–shell microwires; SEM micrographs of the large-scale infiltration of the microwire array by colloids and large-area porous core–shell templating; fractional absorption-depth profiles from FDTD simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 79 publications.

    1. Alexandria R. C. Bredar, Hannah R. M. Margavio, Carrie Donley, Neil Spinner, Nyaan Amin, Gregory N. Parsons, Jillian L. Dempsey. Oxidation Temperature-Dependent Electrochemical Doping of WO3 Deposited via Atomic Layer Deposition. The Journal of Physical Chemistry C 2024, 128 (50) , 21539-21550. https://doi.org/10.1021/acs.jpcc.4c06105
    2. Can Lu, Jianhong Chen, Karolina Piętak, Anna Rokicińska, Piotr Kuśtrowski, Richard Dronskowski, Jiayin Yuan, Serhiy Budnyk, Sebastian Złotnik, Robert H. Coridan, Adam Slabon. Semi Transparent Three-Dimensional Macroporous Quaternary Oxynitride Photoanodes for Photoelectrochemical Water Oxidation. Chemistry of Materials 2022, 34 (15) , 6902-6911. https://doi.org/10.1021/acs.chemmater.2c01290
    3. Ashley R. Bielinski, Andrew J. Gayle, Sudarat Lee, Neil P. Dasgupta. Geometric Optimization of Bismuth Vanadate Core–Shell Nanowire Photoanodes using Atomic Layer Deposition. ACS Applied Materials & Interfaces 2021, 13 (44) , 52063-52072. https://doi.org/10.1021/acsami.1c09236
    4. Zili Ma, Philipp Konze, Michael Küpers, Katharina Wiemer, Dieter Hoffzimmer, Sarah Neumann, Sebastian Kunz, Ulrich Simon, Richard Dronskowski, Adam Slabon. Elucidation of the Active Sites for Monodisperse FePt and Pt Nanocrystal Catalysts for p-WSe2 Photocathodes. The Journal of Physical Chemistry C 2020, 124 (22) , 11877-11885. https://doi.org/10.1021/acs.jpcc.0c01288
    5. Sol A Lee, Seokhoon Choi, Changyeon Kim, Jin Wook Yang, Soo Young Kim, Ho Won Jang. Si-Based Water Oxidation Photoanodes Conjugated with Earth-Abundant Transition Metal-Based Catalysts. ACS Materials Letters 2020, 2 (1) , 107-126. https://doi.org/10.1021/acsmaterialslett.9b00422
    6. Lingfeng Li, Shuning Xiao, Ruping Li, Yingnan Cao, Yan Chen, Zhangcheng Li, Guisheng Li, Hexing Li. Nanotube Array-Like WO3 Photoanode with Dual-Layer Oxygen-Evolution Cocatalysts for Photoelectrocatalytic Overall Water Splitting. ACS Applied Energy Materials 2018, 1 (12) , 6871-6880. https://doi.org/10.1021/acsaem.8b01215
    7. Zhuo Zhang, Lunyong Zhang, Bin Chen, Minki Baek, Kijung Yong. Efficient Photoconversion and Charge Separation of a (Mn2+-Fe2O3)/Reduced Graphene Oxide/(Fe3+-WO3) Photoelectrochemical Anode via Band-Structure Modulation. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 13462-13472. https://doi.org/10.1021/acssuschemeng.8b03368
    8. Shuai Zhang, Shufang Wu, Jinming Wang, Jingpeng Jin, and Tianyou Peng . Controllable Syntheses of Hierarchical WO3 Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties. Crystal Growth & Design 2018, 18 (2) , 794-801. https://doi.org/10.1021/acs.cgd.7b01254
    9. Bingchang Zhang, Jiansheng Jie, Xiujuan Zhang, Xuemei Ou, and Xiaohong Zhang . Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications. ACS Applied Materials & Interfaces 2017, 9 (40) , 34527-34543. https://doi.org/10.1021/acsami.7b06620
    10. Weitao Qiu, Yongchao Huang, Songtao Tang, Hongbing Ji, and Yexiang Tong . Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO4 Photoanode for Solar-Assisted Water Electrolysis. The Journal of Physical Chemistry C 2017, 121 (32) , 17150-17159. https://doi.org/10.1021/acs.jpcc.7b06407
    11. Tingting Yao, Ruotian Chen, Junjie Li, Jingfeng Han, Wei Qin, Hong Wang, Jingying Shi, Fengtao Fan, and Can Li . Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. Journal of the American Chemical Society 2016, 138 (41) , 13664-13672. https://doi.org/10.1021/jacs.6b07188
    12. Wei Cui, Zhouhui Xia, Shan Wu, Fengjiao Chen, Yanguang Li, and Baoquan Sun . Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization. ACS Applied Materials & Interfaces 2015, 7 (46) , 25601-25607. https://doi.org/10.1021/acsami.5b01393
    13. B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi . A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination. Nano Letters 2015, 15 (10) , 6821-6828. https://doi.org/10.1021/acs.nanolett.5b02671
    14. Erno Kemppainen, Janne Halme, and Peter Lund . Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119 (38) , 21747-21766. https://doi.org/10.1021/acs.jpcc.5b04764
    15. Yuxin Yang, Jiarui Wang, Jing Zhao, Benjamin A. Nail, Xing Yuan, Yihang Guo, and Frank E. Osterloh . Photochemical Charge Separation at Particle Interfaces: The n-BiVO4–p-Silicon System. ACS Applied Materials & Interfaces 2015, 7 (10) , 5959-5964. https://doi.org/10.1021/acsami.5b00257
    16. Sachin Khapli, Ina Rianasari, Thomas Blanton, James Weston, Rachael Gilardetti, Rodrigo Neiva, Nick Tovar, Paulo G. Coelho, and Ramesh Jagannathan . Fabrication of Hierarchically Porous Materials and Nanowires through Coffee Ring Effect. ACS Applied Materials & Interfaces 2014, 6 (23) , 20643-20653. https://doi.org/10.1021/am505318d
    17. Yerkanat N. Kanafin, Alshyn Abduvalov, Marat Kaikanov, Stavros G. Poulopoulos, Timur Sh. Atabaev. A review on WO3 photocatalysis used for wastewater treatment and pesticide degradation. Heliyon 2025, 11 (1) , e40788. https://doi.org/10.1016/j.heliyon.2024.e40788
    18. Runlong Jia, Yijie Wang, Aoshuang Li, Chuanwei Cheng. Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Materials Chemistry Frontiers 2024, 8 (5) , 1230-1249. https://doi.org/10.1039/D3QM00990D
    19. I. D. Jagodić, M. M. Uzelac, I. O. Guth, S. R. Lukić-Petrović, N. D. Banić. Removal of methylene blue using tungsten(VI)-oxide immobilized on commercial PVC in the presence of simulated solar radiation. International Journal of Environmental Science and Technology 2023, 20 (8) , 8303-8318. https://doi.org/10.1007/s13762-022-04538-5
    20. Ali Aldrees, Hayat Khan, Abdulaziz Alzahrani, Salisu Dan’azumi. Synthesis and characterization of tungsten trioxide (WO3) as photocatalyst against wastewater pollutants. Applied Water Science 2023, 13 (7) https://doi.org/10.1007/s13201-023-01938-x
    21. Chenjing Gao, Xingwu Guo, Lewen Nie, Xuan Wu, Liming Peng, Juan Chen. A review on WO3 gasochromic film: Mechanism, preparation and properties. International Journal of Hydrogen Energy 2023, 48 (6) , 2442-2465. https://doi.org/10.1016/j.ijhydene.2022.10.100
    22. Emmanuel Boateng, Sapanbir S. Thind, Shuai Chen, Aicheng Chen. Synthesis and electrochemical studies of WO 3 ‐based nanomaterials for environmental, energy and gas sensing applications. Electrochemical Science Advances 2022, 2 (5) https://doi.org/10.1002/elsa.202100146
    23. Ping Zhang, Jiayu Sun, Qi wang, Wei Chen, Xiaochen Li, . Photocatalytic Performance Study of Organophosphorus-Doped Tungsten Trioxide and Composite Materials. International Journal of Chemical Engineering 2022, 2022 , 1-8. https://doi.org/10.1155/2022/5040439
    24. Tiangui Hu, Chang Liu, Jian Liu. High-Efficient Water Splitting Using Nanostructured Conical GaN. Journal of The Electrochemical Society 2022, 169 (6) , 066514. https://doi.org/10.1149/1945-7111/ac7add
    25. Tenzin Ingsel, Ram K. Gupta. Nanostructured silicon for energy applications. 2022, 169-197. https://doi.org/10.1016/B978-0-12-824007-6.00015-0
    26. Aiymkul Markhabayeva, Khabibulla Abdullin, Zhanar Kalkozova, Shyryn Nurbolat, Nurxat Nuraje. Effect of synthesis method parameters on the photocatalytic activity of tungsten oxide nanoplates. AIP Advances 2021, 11 (9) https://doi.org/10.1063/5.0065156
    27. Yubin Chen, Wenyu Zheng, Sebastián Murcia-López, Fei Lv, Joan Ramón Morante, Lionel Vayssieres, Clemens Burda. Light management in photoelectrochemical water splitting – from materials to device engineering. Journal of Materials Chemistry C 2021, 9 (11) , 3726-3748. https://doi.org/10.1039/D0TC06071B
    28. Keorock Choi, Jangwon Bang, In kyu Moon, Kyunghwan Kim, Jungwoo Oh. Enhanced photoelectrochemical efficiency and stability using nitrogen-doped TiO2 on a GaAs photoanode. Journal of Alloys and Compounds 2020, 843 , 155973. https://doi.org/10.1016/j.jallcom.2020.155973
    29. Xiaodong Li, Chao Yang, Jing Li, Xin Xi, Zhanhong Ma, Shan Lin, Lixia Zhao. Controllable fabrication of lateral periodic nanoporous GaN and its enhanced photocatalytic water splitting performance. Applied Surface Science 2020, 526 , 146618. https://doi.org/10.1016/j.apsusc.2020.146618
    30. Robert H. Coridan. A neural network-based approach to predicting absorption in nanostructured, disordered photoelectrodes. Chemical Communications 2020, 56 (72) , 10473-10476. https://doi.org/10.1039/D0CC04229C
    31. Yerkin Shabdan, Aiymkul Markhabayeva, Nurlan Bakranov, Nurxat Nuraje. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting. Nanomaterials 2020, 10 (9) , 1871. https://doi.org/10.3390/nano10091871
    32. Guihua Zeng, Liqiong Hou, Jialing Zhang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. FeOOH/rGO/BiVO 4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance. ChemCatChem 2020, 12 (14) , 3769-3775. https://doi.org/10.1002/cctc.202000382
    33. Jun Pu, Zihan Shen, Chenglin Zhong, Qingwen Zhou, Jinyun Liu, Jia Zhu, Huigang Zhang. Electrodeposition Technologies for Li‐Based Batteries: New Frontiers of Energy Storage. Advanced Materials 2020, 32 (27) https://doi.org/10.1002/adma.201903808
    34. Carles Ros, Teresa Andreu, Joan R. Morante. Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A 2020, 8 (21) , 10625-10669. https://doi.org/10.1039/D0TA02755C
    35. Yihui Zhao, Pieter Westerik, Rudi Santbergen, Erwin Zoethout, Han Gardeniers, Anja Bieberle‐Hütter. From Geometry to Activity: A Quantitative Analysis of WO 3 /Si Micropillar Arrays for Photoelectrochemical Water Splitting. Advanced Functional Materials 2020, 30 (13) https://doi.org/10.1002/adfm.201909157
    36. Jie Tong, Minghao Zhang, Shuhua Zhang, Yuqing Lei, Meicheng Li, Mingde Qin, Yingfeng Li. Effects of the ambient medium and structure parameter on the optical properties of tapered silicon nanowire. Optics Communications 2020, 454 , 124515. https://doi.org/10.1016/j.optcom.2019.124515
    37. Ke‐Jie Zhang, Hao Xu, Lei Sun, Wen‐Tao Luo, Si‐Wen Gu, Hanyang Wang, Chengfan Ye, Shuo Han, Tianying Shen. Novel Method of MoS 2 Decorated CdS Core‐shell Nano‐Heterojunctions for Highly Efficient and Stable Hydrogen Generation. ChemistrySelect 2019, 4 (46) , 13615-13621. https://doi.org/10.1002/slct.201903127
    38. Yihui Zhao, Geert Brocks, Han Genuit, Reinoud Lavrijsen, Marcel A. Verheijen, Anja Bieberle‐Hütter. Boosting the Performance of WO 3 /n‐Si Heterostructures for Photoelectrochemical Water Splitting: from the Role of Si to Interface Engineering. Advanced Energy Materials 2019, 9 (26) https://doi.org/10.1002/aenm.201900940
    39. Jiajie Cen, Qiyuan Wu, Danhua Yan, Wenrui Zhang, Yue Zhao, Xiao Tong, Mingzhao Liu, Alexander Orlov. New aspects of improving the performance of WO 3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. RSC Advances 2019, 9 (2) , 899-905. https://doi.org/10.1039/C8RA08875F
    40. Subhash Chandra Shit, Indranil Mondal, Saikiran Pendem, Linyi Bai, Jeong Young Park, John Mondal. MOF‐Derived Bifunctional Iron Oxide and Iron Phosphide Nanoarchitecture Photoelectrode for Neutral Water Splitting. ChemElectroChem 2018, 5 (19) , 2842-2849. https://doi.org/10.1002/celc.201800744
    41. Mya A. Norman, Walker L. Perez, Chandler C. Kline, Robert H. Coridan. Enhanced Photoelectrochemical Energy Conversion in Ultrathin Film Photoanodes with Hierarchically Tailorable Mesoscale Structure. Advanced Functional Materials 2018, 28 (29) https://doi.org/10.1002/adfm.201800481
    42. Xiaojun Wang, Kai-Hang Ye, Xiang Yu, Jiaqian Zhu, Yi Zhu, Yuanming Zhang. Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes. Journal of Power Sources 2018, 391 , 34-40. https://doi.org/10.1016/j.jpowsour.2018.04.074
    43. Ming Meng, Sihua Zhou, Lun Yang, Zhixing Gan, Kuili Liu, Fengshou Tian, Yu Zhu, ChunYang Li, Weifeng Liu, Honglei Yuan, Yan Zhang. Hydrogenated TiO 2 nanotube photonic crystals for enhanced photoelectrochemical water splitting. Nanotechnology 2018, 29 (15) , 155401. https://doi.org/10.1088/1361-6528/aaaace
    44. Yingfeng Li, Wenjian Liu, Younan Luo, Mengqi Cui, Meicheng Li. Oxidation of silicon nanowire can transport much more light into silicon substrate. Optics Express 2018, 26 (2) , A19. https://doi.org/10.1364/OE.26.000A19
    45. Zongkai Wu, Ghunbong Cheung, Jiarui Wang, Zeqiong Zhao, Frank E. Osterloh. Wavelength dependent photochemical charge transfer at the Cu 2 O–BiVO 4 particle interface – evidence for tandem excitation. Chemical Communications 2018, 54 (65) , 9023-9026. https://doi.org/10.1039/C8CC04123G
    46. Ming Fang, Guofa Dong, Renjie Wei, Johnny C. Ho. Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials 2017, 7 (23) https://doi.org/10.1002/aenm.201700559
    47. Tom Bosserez, Jan Rongé, Lisa Geerts, Christos Trompoukis, Johan A. Martens. Integrated Solar Hydrogen Devices: Cell Design and Nanostructured Components in Liquid and Vapor‐Phase Water Splitting. 2017, 907-938. https://doi.org/10.1002/9783527699827.ch34
    48. Kai-Hang Ye, Zilong Wang, Jiuwang Gu, Shuang Xiao, Yufei Yuan, Yi Zhu, Yuanming Zhang, Wenjie Mai, Shihe Yang. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy & Environmental Science 2017, 10 (3) , 772-779. https://doi.org/10.1039/C6EE03442J
    49. Lingyun He, Wu Zhou, Dongping Cai, Samuel S. Mao, Ke Sun, Shaohua Shen. Pulsed laser-deposited n-Si/NiO x photoanodes for stable and efficient photoelectrochemical water splitting. Catalysis Science & Technology 2017, 7 (12) , 2632-2638. https://doi.org/10.1039/C7CY00114B
    50. James M. Lowe, Qigeng Yan, Mourad Benamara, Robert H. Coridan. Direct photolithographic patterning of cuprous oxide thin films via photoelectrodeposition. J. Mater. Chem. A 2017, 5 (41) , 21765-21772. https://doi.org/10.1039/C7TA05321E
    51. 师懿 于. Fabrication and Photoelectrochemical Performance of Si Nanowire Photoelectrode Structured with Quantum Size Surface. Advances in Environmental Protection 2017, 07 (03) , 10-17. https://doi.org/10.12677/AEP.2017.73B002
    52. Richard Foulkes, Chaoran Jiang, Junwang Tang. 2 Devices for Solar-Driven Water Splitting to Hydrogen Fuel and Their Technical and Economic Assessments. 2016, 9-46. https://doi.org/10.1201/9781315370538-3
    53. Nathan S. Lewis. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nature Nanotechnology 2016, 11 (12) , 1010-1019. https://doi.org/10.1038/nnano.2016.194
    54. Dilip Kumar Behara, Gyan Prakash Sharma, Arun Prakash Upadhyay, Maurya Gyanprakash, Raj Ganesh S Pala, Sri Sivakumar. Synchronization of charge carrier separation by tailoring the interface of Si–Au–TiO2 heterostructures via click chemistry for PEC water splitting. Chemical Engineering Science 2016, 154 , 150-169. https://doi.org/10.1016/j.ces.2016.06.063
    55. Yuan Li, Lihan Zhang, Ruirui Liu, Zhen Cao, Xiaoming Sun, Xijun Liu, Jun Luo. WO 3 @α‐Fe 2 O 3 Heterojunction Arrays with Improved Photoelectrochemical Behavior for Neutral pH Water Splitting. ChemCatChem 2016, 8 (17) , 2765-2770. https://doi.org/10.1002/cctc.201600475
    56. Zhixiong Cai, Feiming Li, Wei Xu, Yaqi Jiang, Feng Luo, Yiru Wang, Xi Chen. Enhanced performance of photoelectrochemical water oxidation using a three-dimensional interconnected nanostructural photoanode via simultaneously harnessing charge transfer and coating with an oxygen evolution catalyst. Nano Energy 2016, 26 , 257-266. https://doi.org/10.1016/j.nanoen.2016.05.039
    57. Manas Pal, Hao Wu, Yunke Jing, Xiaomin Li, Hongwei Zhu, Changyao Wang, Shuai Wang, Abdullah M. Al‐Enizi, Yonghui Deng, Gengfeng Zheng, Dongyuan Zhao. Core–Shell Silicon@Mesoporous TiO 2 Heterostructure: Towards Solar‐Powered Photoelectrochemical Conversion. ChemNanoMat 2016, 2 (7) , 647-651. https://doi.org/10.1002/cnma.201600085
    58. Dianyi Hu, Peng Diao, Di Xu, Qingyong Wu. Gold/WO3 nanocomposite photoanodes for plasmonic solar water splitting. Nano Research 2016, 9 (6) , 1735-1751. https://doi.org/10.1007/s12274-016-1067-0
    59. Yingfeng Li, Meicheng Li, Ruike Li, Pengfei Fu, Tai Wang, Younan Luo, Joseph Michel Mbengue, Mwenya Trevor. Exact comprehensive equations for the photon management properties of silicon nanowire. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24847
    60. Zhijie Wang, Dawei Cao, Rui Xu, Shengchun Qu, Zhanguo Wang, Yong Lei. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy 2016, 19 , 328-362. https://doi.org/10.1016/j.nanoen.2015.11.032
    61. Bing-Chang Zhang, Hui Wang, Le He, Chun-Yang Duan, Fan Li, Xue-Mei Ou, Bao-Quan Sun, Xiao-Hong Zhang. The diameter-dependent photoelectrochemical performance of silicon nanowires. Chemical Communications 2016, 52 (7) , 1369-1372. https://doi.org/10.1039/C5CC08455E
    62. Bo Sun, Tielin Shi, Zhiyong Liu, Zirong Tang, Jianxin Zhou, Guanglan Liao. Integration of TiO 2 photoanode and perovskite solar cell for overall solar-driven water splitting. RSC Advances 2016, 6 (111) , 110120-110126. https://doi.org/10.1039/C6RA24247B
    63. Gillian Collins, Eileen Armstrong, David McNulty, Sally O’Hanlon, Hugh Geaney, Colm O’Dwyer. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials 2016, 17 (1) , 563-582. https://doi.org/10.1080/14686996.2016.1226121
    64. Qing Hao, Jianping Lei, Quanbo Wang, Yang Zang, Huangxian Ju. Carbon nitride nanosheets sensitized quantum dots as photocathode for photoelectrochemical biosensing. Journal of Electroanalytical Chemistry 2015, 759 , 8-13. https://doi.org/10.1016/j.jelechem.2015.05.001
    65. Kai-Hang Ye, Zhisheng Chai, Jiuwang Gu, Xiang Yu, Chuanxi Zhao, Yuanming Zhang, Wenjie Mai. BiOI–BiVO 4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 2015, 18 , 222-231. https://doi.org/10.1016/j.nanoen.2015.10.018
    66. Hiroyuki Kaneko, Tsutomu Minegishi, Kazunari Domen. Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight. Coatings 2015, 5 (3) , 293-311. https://doi.org/10.3390/coatings5030293
    67. Xiaorong Cheng, Wen Dong, Fengang Zheng, Liang Fang, Mingrong Shen. Enhanced photocathodic behaviors of Pb(Zr0.20Ti0.80)O3 films on Si substrates for hydrogen production. Applied Physics Letters 2015, 106 (24) https://doi.org/10.1063/1.4922733
    68. Yingfeng Li, Meicheng Li, Ruike Li, Pengfei Fu, Lihua Chu, Dandan Song. Method to determine the optimal silicon nanowire length for photovoltaic devices. Applied Physics Letters 2015, 106 (9) https://doi.org/10.1063/1.4914372
    69. Xiaogang Yang, Rui Liu, Yumin He, James Thorne, Zhi Zheng, Dunwei Wang. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research 2015, 8 (1) , 56-81. https://doi.org/10.1007/s12274-014-0645-2
    70. Yingfeng Li, Meicheng Li, Dandan Song, Hong Liu, Bing Jiang, Fan Bai, Lihua Chu. Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells. Nano Energy 2015, 11 , 756-764. https://doi.org/10.1016/j.nanoen.2014.11.054
    71. Fen-Li Yang, Wei Zhang, Zi-Xiang Chi, Fu-Quan Cheng, Ji-Tao Chen, An-Min Cao, Li-Jun Wan. Controlled formation of core–shell structures with uniform AlPO 4 nanoshells. Chemical Communications 2015, 51 (14) , 2943-2945. https://doi.org/10.1039/C4CC09924A
    72. Weiwei Zhao, Chao Zhang, Yanmei Shi, Rui Wu, Bin Zhang. Self-assembled synthesis of hierarchical Zn 2 GeO 4 core–shell microspheres with enhanced photocatalytic activity. Dalton Transactions 2015, 44 (1) , 75-82. https://doi.org/10.1039/C4DT02803A
    73. Xin Li, Jiaguo Yu, Jingxiang Low, Yueping Fang, Jing Xiao, Xiaobo Chen. Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A 2015, 3 (6) , 2485-2534. https://doi.org/10.1039/C4TA04461D
    74. Ting Guo, Ming-Shui Yao, Yuan-Hua Lin, Ce-Wen Nan. A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 2015, 17 (19) , 3551-3585. https://doi.org/10.1039/C5CE00034C
    75. Jin You Zheng, Zeeshan Haider, Thanh Khue Van, Amol Uttam Pawar, Myung Jong Kang, Chang Woo Kim, Young Soo Kang. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17 (32) , 6070-6093. https://doi.org/10.1039/C5CE00900F
    76. J. Theerthagiri, R. A. Senthil, A. Malathi, A. Selvi, J. Madhavan, Muthupandian Ashokkumar. Synthesis and characterization of a CuS–WO 3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Advances 2015, 5 (65) , 52718-52725. https://doi.org/10.1039/C5RA06512G
    77. Fu-Qiang Zhang, Ya Hu, Xiang-Min Meng, Kui-Qing Peng. Fabrication and photoelectrochemical properties of silicon/nickel oxide core/shell nanowire arrays. RSC Advances 2015, 5 (107) , 88209-88213. https://doi.org/10.1039/C5RA13857D
    78. Jing Zhao, Everardo Olide, Frank E. Osterloh. Enhancing Majority Carrier Transport in WO 3 Water Oxidation Photoanode via Electrochemical Doping. Journal of The Electrochemical Society 2015, 162 (1) , H65-H71. https://doi.org/10.1149/2.0871501jes
    79. Hao Wu, Jing Geng, Yuhang Wang, Yanli Wang, Zheng Peng, Gengfeng Zheng. Bias-free, solar-charged electric double-layer capacitors. Nanoscale 2014, 6 (24) , 15316-15320. https://doi.org/10.1039/C4NR05628K

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 5, 2310–2317
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl404623t
    Published March 28, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    3832

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.