ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Cytotoxic Halogenated Metabolites from the Brazilian Red Alga Laurencia catarinensis

View Author Information
Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece, Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, Brazil, Department of Didactics of Sciences, University of Jaén, PO 23071, Jaén, Spain, Department of Animal and Human Physiology, School of Sciences, University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece, and Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Santa Catarina, Campus Trindade, 88040-970 Florianópolis, Brazil
* To whom correspondence should be addressed. Tel/Fax: +30-210-7274592. E-mail: [email protected]
†School of Pharmacy, University of Athens.
‡Programa de Pós-graduação em Farmácia, Universidade Federal de Santa Catarina.
§University of Jaén.
⊥School of Sciences, University of Athens.
∥Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Santa Catarina.
Cite this: J. Nat. Prod. 2010, 73, 1, 27–32
Publication Date (Web):December 29, 2009
https://doi.org/10.1021/np900627r
Copyright © 2009 The American Chemical Society and American Society of Pharmacognosy

    Article Views

    1440

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Seven new (17) and seven previously reported (814) halogenated metabolites were isolated from the organic extract of the Brazilian red alga Laurencia catarinensis. The structure elucidation and the assignment of the relative configurations of the new natural products were based on detailed NMR and MS spectroscopic analyses, whereas the structure of metabolite 6 was confirmed by single-crystal X-ray diffraction analysis. The absolute configuration of metabolite 1 was determined using the modified Mosher’s method. The in vitro cytotoxicity of compounds 114 was evaluated against HT29, MCF7, and A431 cell lines.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    1H and 13C NMR spectra of the new compounds 17 and CIF data for the crystal structure of metabolite 6. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 41 publications.

    1. Andrei G. Kutateladze and D. Sai Reddy . High-Throughput in Silico Structure Validation and Revision of Halogenated Natural Products Is Enabled by Parametric Corrections to DFT-Computed 13C NMR Chemical Shifts and Spin–Spin Coupling Constants. The Journal of Organic Chemistry 2017, 82 (7) , 3368-3381. https://doi.org/10.1021/acs.joc.7b00188
    2. Jia-Yu Chen, Chiung-Yao Huang, Yun-Sheng Lin, Tsong-Long Hwang, Wei-Lung Wang, Shu-Fen Chiou, and Jyh-Horng Sheu . Halogenated Sesquiterpenoids from the Red Alga Laurencia tristicha Collected in Taiwan. Journal of Natural Products 2016, 79 (9) , 2315-2323. https://doi.org/10.1021/acs.jnatprod.6b00452
    3. Shunya Takahashi, Masayuki Yasuda, Takemichi Nakamura, Ken Hatano, Koji Matsuoka, and Hiroyuki Koshino . Synthesis and Structural Revision of a Brominated Sesquiterpenoid, Aldingenin C. The Journal of Organic Chemistry 2014, 79 (19) , 9373-9380. https://doi.org/10.1021/jo501228v
    4. Bin-Gui Wang, James B. Gloer, Nai-Yun Ji, and Jian-Chun Zhao . Halogenated Organic Molecules of Rhodomelaceae Origin: Chemistry and Biology. Chemical Reviews 2013, 113 (5) , 3632-3685. https://doi.org/10.1021/cr9002215
    5. Ryosuke Fukada, Yukimasa Yamagishi, Misaki Nagasaka, Daiki Osada, Kazumi Nimura, Iori Oshima, Kazuki Tsujimoto, Masayuki Kirihara, Shinobu Takizawa, Norio Kikuchi, Takahiro Ishii, Takashi Kamada. Antifouling Brominated Diterpenoids from Japanese Marine Red Alga Laurencia venusta Yamada. Chemistry & Biodiversity 2023, 20 (8) https://doi.org/10.1002/cbdv.202300888
    6. Andrea N. L. Batista, Fernando M. dos Santos, Alessandra L. Valverde. Absolute configuration assignment of marine natural products in Brazil. Frontiers in Natural Products 2023, 2 https://doi.org/10.3389/fntpr.2023.1224564
    7. Gordon W. Gribble. Naturally Occurring Organohalogen Compounds—A Comprehensive Review. 2023, 1-546. https://doi.org/10.1007/978-3-031-26629-4_1
    8. Patrícia Guimarães Araújo, Jônatas M. C. Souza, Cesar B. Pasqualetti, Nair S. Yokoya. Auxin and cytokinin combinations improve growth rates and protein contents in Laurencia catarinensis (Rhodophyta). Journal of Applied Phycology 2021, 33 (2) , 1071-1079. https://doi.org/10.1007/s10811-020-02334-7
    9. Aikaterini Koutsaviti, Maria G. Daskalaki, Susana Agusti, Sotirios C. Kampranis, Christos Tsatsanis, Carlos M. Duarte, Vassilios Roussis, Efstathia Ioannou. Thuwalallenes A–E and Thuwalenynes A–C: New C15 Acetogenins with Anti-Inflammatory Activity from a Saudi Arabian Red Sea Laurencia sp.. Marine Drugs 2019, 17 (11) , 644. https://doi.org/10.3390/md17110644
    10. Jonatas M. C. Souza, Júlia Z. Castro, Alan T. Critchley, Nair S. Yokoya. Physiological responses of the red algae Gracilaria caudata (Gracilariales) and Laurencia catarinensis (Ceramiales) following treatment with a commercial extract of the brown alga Ascophyllum nodosum (AMPEP). Journal of Applied Phycology 2019, 31 (3) , 1883-1888. https://doi.org/10.1007/s10811-018-1683-z
    11. Małgorzata Grabarczyk, Katarzyna Wińska, Wanda Mączka. An Overview of Synthetic Methods for the Preparation of Halolactones. Current Organic Synthesis 2019, 16 (1) , 98-111. https://doi.org/10.2174/1570179415666180918152652
    12. Vinod K. Mandrekar, Umesh B. Gawas, Mahesh S. Majik. Brominated Molecules From Marine Algae and Their Pharmacological Importance. 2019, 461-490. https://doi.org/10.1016/B978-0-444-64183-0.00013-0
    13. Youn Kyung Choi, Bo-Ram Ye, Eun-A kim, Junseong Kim, Min-Sun Kim, Won Woo Lee, Gin-Nae Ahn, Nalae Kang, Won-Kyo Jung, Soo-Jin Heo. Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomedicine & Pharmacotherapy 2018, 103 , 1170-1177. https://doi.org/10.1016/j.biopha.2018.04.121
    14. Sara Garcia-Dav, Ivan Murillo-Al, Mauricio Munoz-Ocho, Edith Carranza-T, Ruth Garza-Padr, Eufemia Morales-Ru, Ezequiel Viveros-Va. Bactericide, Antioxidant and Cytotoxic Activities from Marine Algae of Genus Laurencia Collected in Baja California Sur, Mexico. International Journal of Pharmacology 2018, 14 (3) , 391-396. https://doi.org/10.3923/ijp.2018.391.396
    15. Louisi Souza de Oliveira, Diogo Antonio Tschoeke, Ana Carolina Rubem Magalhães Lopes, Daniela Bueno Sudatti, Pedro Milet Meirelles, Cristiane C. Thompson, Renato Crespo Pereira, Fabiano L. Thompson, . Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea. mSphere 2017, 2 (6) https://doi.org/10.1128/mSphere.00094-17
    16. Hélène Esselin, Sylvain Sutour, Joana Liberal, Maria Cruz, Ligia Salgueiro, Benjamin Siegler, Ingrid Freuze, Vincent Castola, Mathieu Paoli, Ange Bighelli, Félix Tomi. Chemical Composition of Laurencia obtusa Extract and Isolation of a New C15-Acetogenin. Molecules 2017, 22 (5) , 779. https://doi.org/10.3390/molecules22050779
    17. Xiao-Qing Yu, Chang-Sheng Jiang, Yi Zhang, Pan Sun, Tibor Kurtán, Attila Mándi, Xiao-Lu Li, Li-Gong Yao, Ai-Hong Liu, Bin Wang, Yue-Wei Guo, Shui-Chun Mao. Compositacins A–K: Bioactive chamigrane-type halosesquiterpenoids from the red alga Laurencia composita Yamada. Phytochemistry 2017, 136 , 81-93. https://doi.org/10.1016/j.phytochem.2017.01.007
    18. Fernanda L. S. Machado, Heitor M. Duarte, Lísia M. S. Gestinari, Valéria Cassano, Carlos R. Kaiser, Angélica R. Soares. Geographic Distribution of Natural Products Produced by the Red Alga Laurencia dendroidea J. Agardh. Chemistry & Biodiversity 2016, 13 (7) , 845-851. https://doi.org/10.1002/cbdv.201500246
    19. Małgorzata Grabarczyk, Katarzyna Wińska, Wanda Mączka, Barbara Żarowska, Gabriela Maciejewska, Katarzyna Dancewicz, Beata Gabryś, Mirosław Anioł. Synthesis, biotransformation and biological activity of halolactones obtained from β-ionone. Tetrahedron 2016, 72 (5) , 637-644. https://doi.org/10.1016/j.tet.2015.12.005
    20. Renato Pereira, Paula Andrade, Patrícia Valentão. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Marine Drugs 2016, 14 (2) , 39. https://doi.org/10.3390/md14020039
    21. Maria Harizani, Efstathia Ioannou, Vassilios Roussis. The Laurencia Paradox: An Endless Source of Chemodiversity. 2016, 91-252. https://doi.org/10.1007/978-3-319-33172-0_2
    22. G. Dicky John Davis, A. Hannah Rachel Vasanthi. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ). European Journal of Pharmaceutical Sciences 2015, 76 , 110-118. https://doi.org/10.1016/j.ejps.2015.04.026
    23. Olga A. Mukhina, Hiroyuki Koshino, Michael T. Crimmins, Andrei G. Kutateladze. Computationally driven reassignment of the structures of aldingenins A and B. Tetrahedron Letters 2015, 56 (34) , 4900-4903. https://doi.org/10.1016/j.tetlet.2015.06.078
    24. Jairo Quintana, José Brango-Vanegas, Geison M. Costa, Leonardo Castellanos, Catalina Arévalo, Carmenza Duque. Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Revista Brasileira de Farmacognosia 2015, 25 (3) , 199-207. https://doi.org/10.1016/j.bjp.2015.03.013
    25. Louisi de Oliveira, Diogo Tschoeke, Aline de Oliveira, Lilian Hill, Wladimir Paradas, Leonardo Salgado, Cristiane Thompson, Renato Pereira, Fabiano Thompson. New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta). Marine Drugs 2015, 13 (2) , 879-902. https://doi.org/10.3390/md13020879
    26. Daniela Rezende Peçanha Fernandes, Vinícius Peruzzi de Oliveira, Yocie Yoneshigue Valentin. Seaweed biotechnology in Brazil: six decades of studies on natural products and their antibiotic and other biological activities. Journal of Applied Phycology 2014, 26 (5) , 1923-1937. https://doi.org/10.1007/s10811-014-0287-5
    27. Jean‐Michel Kornprobst. Rhodophyceae (Red Algae). 2014, 1-104. https://doi.org/10.1002/9783527335855.marprod013
    28. Xiao-Qing Yu, Wen-Fei He, Ding-Quan Liu, Mei-Tang Feng, Yi Fang, Bin Wang, Li-Hua Feng, Yue-Wei Guo, Shui-Chun Mao. A seco -laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 2014, 103 , 162-170. https://doi.org/10.1016/j.phytochem.2014.03.021
    29. Bin Wang, Lishu Wang, Yinglei Li, Yonghong Liu. Heterocyclic terpenes: linear furano- and pyrroloterpenoids. RSC Adv. 2014, 4 (24) , 12216-12234. https://doi.org/10.1039/C3RA48040B
    30. Daisuke Mikami, Hideyuki Kurihara, Sang Kim, Koretaro Takahashi. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors. Marine Drugs 2013, 11 (10) , 4050-4057. https://doi.org/10.3390/md11104050
    31. G Davis, Veeresh Sali, Hannah Vasanthi. Clues for Cancer from Ocean-Derived Molecules and Role of In Silico Techniques in Anticancer Drug Discovery. 2012, 393-408. https://doi.org/10.1201/b13868-34
    32. Louisi Souza de Oliveira, Gustavo Bueno Gregoracci, Genivaldo Gueiros Zacarias Silva, Leonardo Tavares Salgado, Gilberto Amado Filho, Marcio Alves-Ferreira, Renato Crespo Pereira, Fabiano L Thompson. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 2012, 13 (1) https://doi.org/10.1186/1471-2164-13-487
    33. Małgorzata Grabarczyk. Fungal Strains as Catalysts for the Biotransformation of Halolactones by Hydrolytic Dehalogenation with the Dimethylcyclohexane System. Molecules 2012, 17 (8) , 9741-9753. https://doi.org/10.3390/molecules17089741
    34. Jin-Woo Lim, Ko-Hoon Kim, Se-Hee Kim, Jae-Nyoung Kim. An Efficient Synthesis of Various γ-Substituted Butenolides from Morita-Baylis-Hillman Adducts. Bulletin of the Korean Chemical Society 2012, 33 (5) , 1781-1784. https://doi.org/10.5012/bkcs.2012.33.5.1781
    35. Li-Ying Ma, Wei-Zhong Liu, Li Shen, Yu-Ling Huang, Xian-Guo Rong, Yan-Yan Xu, Xue-Dong Gao. Spiroketals, isocoumarin, and indoleformic acid derivatives from saline soil derived fungus Penicillium raistrickii. Tetrahedron 2012, 68 (10) , 2276-2282. https://doi.org/10.1016/j.tet.2012.01.054
    36. John W. Blunt, Brent R. Copp, Robert A. Keyzers, Murray H. G. Munro, Michèle R. Prinsep. Marine natural products. Nat. Prod. Rep. 2012, 29 (2) , 144-222. https://doi.org/10.1039/C2NP00090C
    37. Gordon W. Gribble. Recently Discovered Naturally Occurring Heterocyclic Organohalogen Compounds. HETEROCYCLES 2012, 84 (1) , 157. https://doi.org/10.3987/REV-11-SR(P)5
    38. Fakhri Mahdi, Miriam Falkenberg, Efstathia Ioannou, Vassilios Roussis, Yu-Dong Zhou, Dale G. Nagle. Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochemistry Letters 2011, 4 (2) , 75-78. https://doi.org/10.1016/j.phytol.2010.09.003
    39. Shui-Chun MAO, Yue-Wei GUO. Sesquiterpenes from Chinese Red Alga <I>Laurencia oka-murai</I>. Chinese Journal of Natural Medicines 2011, 8 (5) , 321-325. https://doi.org/10.3724/SP.J.1009.2010.00321
    40. Braulio M. Fraga. Natural sesquiterpenoids. Natural Product Reports 2011, 28 (9) , 1580. https://doi.org/10.1039/c1np00046b
    41. Shui-Chun MAO, Yue-Wei GUO. Sesquiterpenes from Chinese Red Alga Laurencia okamurai. Chinese Journal of Natural Medicines 2010, 8 (5) , 321-325. https://doi.org/10.1016/S1875-5364(10)60039-8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect