ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of [(η5-C5H5)Fe(CO)2BCl2·NC5H4-4-Me] from [(η5-C5H5)Fe(CO)2BCl2]:  First Preparation of a Lewis Acid−Base Adduct from a Boryl Complex
My Activity

Figure 1Loading Img
    Communication

    Synthesis of [(η5-C5H5)Fe(CO)2BCl2·NC5H4-4-Me] from [(η5-C5H5)Fe(CO)2BCl2]:  First Preparation of a Lewis Acid−Base Adduct from a Boryl Complex
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    Other Access OptionsSupporting Information (1)

    Organometallics

    Cite this: Organometallics 2004, 23, 18, 4178–4180
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om049555j
    Published July 24, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The (dichloroboryl)iron complex [(η5-C5H5)Fe(CO)2BCl2] and its corresponding Lewis base adduct with 4-methylpyridine have been prepared; characterization by single-crystal X-ray diffraction has afforded a structural comparison between the two species.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Fax:  +49 931 888 4623. Tel:  +49 931 888 5260. E-mail:  h.braunschweig@ mail.uni-wuerzburg.de.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Text detailing the synthetic procedures, spectroscopic data and structural determinations for 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication Nos. CCDC-237191 (1) and CCDC-237192 (2). Copies of these data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, U.K. (fax, (+44)1223-336-033; e-mail, [email protected]).

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 50 publications.

    1. Rui Sun, Wen-Hao Deng, Boying Yu, Yilei Lu, Xiaofang Zhai, Rong-Zhen Liao, Chen-Ho Tung, Wenguang Wang. Hydroboration of the (C5Me5)Fe(1,2-Ph2PC6H4) System To Derive Hydridoborate and Hydridosilicate Complexes. Organometallics 2022, 41 (17) , 2504-2512. https://doi.org/10.1021/acs.organomet.2c00331
    2. Wei-Chun Shih and Oleg V. Ozerov . Selective ortho C–H Activation of Pyridines Directed by Lewis Acidic Boron of PBP Pincer Iridium Complexes. Journal of the American Chemical Society 2017, 139 (48) , 17297-17300. https://doi.org/10.1021/jacs.7b10570
    3. Katarzyna Wójcik, Ana Maria Preda, Lutz Mertens, Petra Ecorchard, Tobias Rüffer, Heinrich Lang, and Michael Mehring . Iron–Bismuth Halido Compounds: Molecules, Clusters, and Polymers. Inorganic Chemistry 2015, 54 (8) , 3905-3912. https://doi.org/10.1021/acs.inorgchem.5b00088
    4. Nicole Arnold, Holger Braunschweig, Peter Brenner, J. Oscar C. Jimenez-Halla, Thomas Kupfer, and Krzysztof Radacki . Reactivity of Boryl Complexes: Synthesis and Structure of New Neutral and Cationic Platinum Boryls and Borylenes. Organometallics 2012, 31 (5) , 1897-1907. https://doi.org/10.1021/om2012248
    5. Peter Jutzi, Kinga Leszczyńska, Andreas Mix, Beate Neumann, Britta Rummel, Wolfgang Schoeller, and Hans-Georg Stammler. Synthesis and Characterization of the Ferrio-Substituted Silicon(II) Compound Me5C5(CO)2FeSiC5Me5. Organometallics 2010, 29 (21) , 4759-4761. https://doi.org/10.1021/om100366f
    6. Holger Braunschweig, Rian D. Dewhurst and Achim Schneider. Electron-Precise Coordination Modes of Boron-Centered Ligands. Chemical Reviews 2010, 110 (7) , 3924-3957. https://doi.org/10.1021/cr900333n
    7. Holger Braunschweig, Katrin Gruss and Krzysztof Radacki. Reactivity of Pt0 Complexes toward Gallium(III) Halides: Synthesis of a Platinum Gallane Complex and Oxidative Addition of Gallium Halides to Pt0. Inorganic Chemistry 2008, 47 (19) , 8595-8597. https://doi.org/10.1021/ic801293e
    8. Philipp Bissinger,, Holger Braunschweig, and, Fabian Seeler. Syntheses and Structure of Bridged Haloborylene Complexes. Organometallics 2007, 26 (19) , 4700-4701. https://doi.org/10.1021/om700486d
    9. King Chung Lam,, Zhenyang Lin, and, Todd B. Marder. DFT Studies of β-Boryl Elimination Processes:  Potential Role in Catalyzed Borylation Reactions of Alkenes. Organometallics 2007, 26 (13) , 3149-3156. https://doi.org/10.1021/om0700314
    10. Holger Braunschweig,, Krzysztof Radacki,, Fabian Seeler, and, George R. Whittell. Synthesis and Reactivity of Dihaloboryl Complexes. Organometallics 2006, 25 (19) , 4605-4610. https://doi.org/10.1021/om060377z
    11. Jun Zhu and, Zhenyang Lin, , Todd B. Marder. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorganic Chemistry 2005, 44 (25) , 9384-9390. https://doi.org/10.1021/ic0513641
    12. Natalie R. Bunn,, Simon Aldridge,, Deborah L. Kays (née Coombs),, Natalie D. Coombs,, Joanna K. Day,, Li-ling Ooi,, Simon J. Coles, and, Michael B. Hursthouse. Toward Cationic Gallane- and Indanediyl Complexes:  Synthetic Approaches to Three-Coordinate Halogallyl and -indyl Precursors. Organometallics 2005, 24 (24) , 5879-5890. https://doi.org/10.1021/om050630f
    13. Holger Braunschweig,, Krzysztof Radacki,, Daniela Rais,, Fabian Seeler, and, Katharina Uttinger. Heterodinuclear Bridged Borylene Complexes. Journal of the American Chemical Society 2005, 127 (5) , 1386-1387. https://doi.org/10.1021/ja0426746
    14. Holger Braunschweig,, Krzysztof Radacki,, Daniela Rais, and, Fabian Seeler. Preparation and Structural Characterization of Transition Metal Complexes Featuring the Ferrocenyl(bromo)boryl Ligand. Organometallics 2004, 23 (23) , 5545-5549. https://doi.org/10.1021/om049395b
    15. Ana L. Narro, Hadi D. Arman, Zachary J. Tonzetich. Insertion chemistry of iron( ii ) boryl complexes. Dalton Transactions 2022, 51 (40) , 15475-15483. https://doi.org/10.1039/D2DT02879D
    16. Katharina Münster, Marc D. Walter. Monocyclopentadienyl and Other Half-Sandwich Complexes of Iron. 2022, 46-184. https://doi.org/10.1016/B978-0-12-820206-7.00116-5
    17. Urminder Kaur, Koushik Saha, Sourav Gayen, Sundargopal Ghosh. Contemporary developments in transition metal boryl complexes: An overview. Coordination Chemistry Reviews 2021, 446 , 214106. https://doi.org/10.1016/j.ccr.2021.214106
    18. Yasuro Kawano, Keiji Ueno. Chemistry of Transition Metal Complexes with Group 13 Elements: Transition Metal Complexes with Lewis Acidic Ligands. 2021, 136-175. https://doi.org/10.1039/9781839164200-00136
    19. Akane Suzuki, Xueying Guo, Zhenyang Lin, Makoto Yamashita. Nucleophilic reactivity of the gold atom in a diarylborylgold( i ) complex toward polar multiple bonds. Chemical Science 2021, 12 (3) , 917-928. https://doi.org/10.1039/D0SC05478J
    20. Marc Devillard, Gilles Alcaraz. The Chemistry of Multibonded Organoboron Compounds. 2020, 1-100. https://doi.org/10.1002/9780470682531.pat0972
    21. Holger Braunschweig, Mehmet Ali Celik, Rian D. Dewhurst, Katharina Ferkinghoff, Alexander Hermann, J. Oscar C. Jimenez‐Halla, Thomas Kramer, Krzysztof Radacki, Rong Shang, Eva Siedler, Felix Weißenberger, Christine Werner. Interactions of Isonitriles with Metal–Boron Bonds: Insertions, Coupling, Ring Formation, and Liberation of Monovalent Boron. Chemistry – A European Journal 2016, 22 (33) , 11736-11744. https://doi.org/10.1002/chem.201600793
    22. Thomas N. Hooper, Andrew S. Weller, Nicholas A. Beattie, Stuart A. Macgregor. Dehydrocoupling of phosphine–boranes using the [RhCp*Me(PMe 3 )(CH 2 Cl 2 )][BAr F 4 ] precatalyst: stoichiometric and catalytic studies. Chemical Science 2016, 7 (3) , 2414-2426. https://doi.org/10.1039/C5SC04150C
    23. J. Niemeyer, M. J. Kelly, I. M. Riddlestone, D. Vidovic, S. Aldridge. Iminoborylene complexes: evaluation of synthetic routes towards BN-allenylidenes and unexpected reactivity towards carbodiimides. Dalton Transactions 2015, 44 (25) , 11294-11305. https://doi.org/10.1039/C5DT00131E
    24. Zhenyang Lin. Reactivities and Electronic Properties of Boryl Ligands. 2014, 39-58. https://doi.org/10.1007/430_2014_148
    25. Philipp Bissinger, Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, Katharina Kraft, Thomas Kramer, Krzysztof Radacki. Base‐Stabilized Boryl and Cationic Haloborylene Complexes of Iron. Chemistry – A European Journal 2013, 19 (40) , 13402-13407. https://doi.org/10.1002/chem.201302263
    26. Holger Braunschweig, Krzysztof Radacki, Rong Shang. σ-Coordination of metal–boryl bonds to gold(i). Chemical Communications 2013, 49 (85) , 9905. https://doi.org/10.1039/c3cc45455j
    27. Jürgen Bauer, Holger Braunschweig, Rian D. Dewhurst, Katharina Kraft, Krzysztof Radacki. Monohaloboryls (BHX − ) as Bridging Ligands: Observable Dinuclear σ‐(Halo)boranyl Intermediates in the Synthesis of Metalloborylenes. Chemistry – A European Journal 2012, 18 (8) , 2327-2334. https://doi.org/10.1002/chem.201103163
    28. Jochen Niemeyer, David A. Addy, Ian Riddlestone, Michael Kelly, Amber L. Thompson, Dragoslav Vidovic, Simon Aldridge. Extending the Chain: Synthetic, Structural, and Reaction Chemistry of a BN Allenylidene Analogue. Angewandte Chemie 2011, 123 (38) , 9070-9073. https://doi.org/10.1002/ange.201103757
    29. Jochen Niemeyer, David A. Addy, Ian Riddlestone, Michael Kelly, Amber L. Thompson, Dragoslav Vidovic, Simon Aldridge. Extending the Chain: Synthetic, Structural, and Reaction Chemistry of a BN Allenylidene Analogue. Angewandte Chemie International Edition 2011, 50 (38) , 8908-8911. https://doi.org/10.1002/anie.201103757
    30. Holger Braunschweig, Rian D. Dewhurst, Katharina Kraft, Krzysztof Radacki. Borido complexes via intermetallic metalloborylene transfer. Chemical Communications 2011, 47 (35) , 9900. https://doi.org/10.1039/c1cc13444b
    31. Adrian B. Chaplin, Andrew S. Weller. BH Activation at a Rhodium(I) Center: Isolation of a Bimetallic Complex Relevant to the Transition‐Metal‐Catalyzed Dehydrocoupling of Amine–Boranes. Angewandte Chemie 2010, 122 (3) , 591-594. https://doi.org/10.1002/ange.200905185
    32. Adrian B. Chaplin, Andrew S. Weller. BH Activation at a Rhodium(I) Center: Isolation of a Bimetallic Complex Relevant to the Transition‐Metal‐Catalyzed Dehydrocoupling of Amine–Boranes. Angewandte Chemie International Edition 2010, 49 (3) , 581-584. https://doi.org/10.1002/anie.200905185
    33. Li Dang, Zhenyang Lin, Todd B. Marder. Boryl ligands and their roles in metal-catalysed borylation reactions. Chemical Communications 2009, 91 (27) , 3987. https://doi.org/10.1039/b903098k
    34. Deborah L. Kays, Simon Aldridge. Transition Metal Boryl Complexes. 2008, 29-122. https://doi.org/10.1007/430_2007_079
    35. Holger Braunschweig, Carsten Kollann, Fabian Seeler. Transition Metal Borylene Complexes. 2008, 1-27. https://doi.org/10.1007/430_2007_080
    36. G. Davidson. NMR spectroscopy in the liquid and gas phases. 2007, 15-135. https://doi.org/10.1039/b601316n
    37. Jonathan P. H. Charmant, Cheng Fan, Nicholas C. Norman, Paul G. Pringle. Synthesis and reactivity of dichloroboryl complexes of platinum( ii ). Dalton Trans. 2007, 248 (1) , 114-123. https://doi.org/10.1039/B612039N
    38. Holger Braunschweig, Carsten Kollann, Daniela Rais. Übergangsmetallkomplexe des Bors – Neue Erkenntnisse und neuartige Koordinationstypen. Angewandte Chemie 2006, 118 (32) , 5380-5400. https://doi.org/10.1002/ange.200600506
    39. Holger Braunschweig, Carsten Kollann, Daniela Rais. Transition‐Metal Complexes of Boron—New Insights and Novel Coordination Modes. Angewandte Chemie International Edition 2006, 45 (32) , 5254-5274. https://doi.org/10.1002/anie.200600506
    40. Deborah L. Kays (née Coombs), Andrea Rossin, Joanne K. Day, Li-Ling Ooi, Simon Aldridge. Synthetic and reaction chemistry of heteroatom stabilized boryl and cationic borylene complexes. Dalton Trans. 2006, 36 (2) , 399-410. https://doi.org/10.1039/B512275A
    41. Holger Braunschweig, George R. Whittell. Boron as a Bridging Ligand. Chemistry – A European Journal 2005, 11 (21) , 6128-6133. https://doi.org/10.1002/chem.200500368
    42. Nicolas Merle, Christopher G. Frost, Gabriele Kociok-Köhn, Michael C. Willis, Andrew S. Weller. Ruthenium (II) complexes of the chelating phosphine borane H2ClB·dppm. Journal of Organometallic Chemistry 2005, 690 (11) , 2829-2834. https://doi.org/10.1016/j.jorganchem.2005.01.048
    43. Thomas P. Fehlner. Boran‐Mimetika von C 1 ‐M m ‐Organometallkomplexen. Angewandte Chemie 2005, 117 (14) , 2092-2094. https://doi.org/10.1002/ange.200500054
    44. Thomas P. Fehlner. Borane Mimics of C 1 M m Organometallic Complexes. Angewandte Chemie International Edition 2005, 44 (14) , 2056-2058. https://doi.org/10.1002/anie.200500054
    45. Holger Braunschweig, Krzysztof Radacki, David Scheschkewitz, George R. Whittell. Bor als verbrückender Ligand. Angewandte Chemie 2005, 117 (11) , 1685-1688. https://doi.org/10.1002/ange.200463026
    46. Holger Braunschweig, Krzysztof Radacki, David Scheschkewitz, George R. Whittell. Boron as a Bridging Ligand. Angewandte Chemie International Edition 2005, 44 (11) , 1658-1661. https://doi.org/10.1002/anie.200463026
    47. Holger Braunschweig, Krzysztof Radacki, Daniela Rais, George R. Whittell. Ein verbrückter Borylkomplex: ungewöhnlicher Koordinationsmodus für den BR 2 ‐Liganden. Angewandte Chemie 2005, 117 (8) , 1217-1219. https://doi.org/10.1002/ange.200462444
    48. Holger Braunschweig, Krzysztof Radacki, Daniela Rais, George R. Whittell. A Boryl Bridged Complex: An Unusual Coordination Mode of the BR 2 Ligand. Angewandte Chemie International Edition 2005, 44 (8) , 1192-1194. https://doi.org/10.1002/anie.200462444
    49. Holger Braunschweig, Daniela Rais. Reactivity of terminal transition metal borylene complexes. Heteroatom Chemistry 2005, 16 (7) , 566-571. https://doi.org/10.1002/hc.20143
    50. A. L. Johnson. 3  Boron. Annual Reports Section "A" (Inorganic Chemistry) 2005, 101 , 34. https://doi.org/10.1039/b418479n

    Organometallics

    Cite this: Organometallics 2004, 23, 18, 4178–4180
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om049555j
    Published July 24, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    688

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.