Supporting Information

Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesis

Marc Ledendecker^{a,b}, Enrico Pizzutilo^a, Grazia Malta^c, Guilherme V. Fortunato^{a,d}, Karl J. J. Mayrhofer^{a,e,f}, Graham J. Hutchings^c and Simon J. Freakley^g*

^a Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany.

^b Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss Straße 8, 64287 Darmstadt, Germany

^c Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

^d Institute of Chemistry, Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil.

^e Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstr. 3, 91058 Erlangen, Germany.

^f Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

^g Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

*s.freakley@bath.ac.uk

Contents Table S1-3 Figure S1-S5

Element (Orbital)	Atomic %	Weight %
O (1s)	6.6	8.1
C (1s)	90.2	82.8
Cl (2p)	2.5	6.7
Na (1s)	0.1	0.2
Si (2p)	0.4	0.9
Pd (3d)	0.2	1.3

Table S1 – Surface Composition of 1% PdCl_x/C determined by XPS survey scan

Table S2 – Comparison with state-of-the-art cata	lysts under identical co	onditions for direct H ₂ O ₂
synthesis.		

Catalyst	Preparation	Nanostructure	H_2O_2	H_2O_2
	Method		Productivity ^d	Degradation ^e
			(mol / kg / h)	(mol / kg / h)
5% Pd/C ^a	Wet impregnation	PdO nanoparticles	52	255*
		(2-20 nm)		
2.5% Au 2.5% Pd / C ^a	Wet impregnation	Homogeneous AuPd alloys	160	0
3% Pd 2% Sn / TiO.b	Wet impregnation	Sn-Pd nanonarticles	60	0
576142765671162	wet impregnation	(isolated species to 10 nm particles)		Ū
1% Pd/C ^c	Aqua regia	Isolated Pd(II) sites	30	52
Bare Carbon	Aqua regia	-	0	45
1% Pd/C°	Sol Immobilisation	Metallic Pd nanoparticles	120	360
		(2-6 nm)		

^a J. K. Edwards *et al. Science*, **2009**, 323, 1037-1041 ^b S. J. Freakley *et al. Science*, **2016**, 351, 965-968. ^c this work *estimated from figure 1

^d 2 °C, 10 mg catalyst, 29 bar 5% H₂/CO₂, 11 bar 25% O₂/CO₂, 8.5 g solvent (5.6 g CH₃OH + 2.9 g H₂O) 1200 rpm, 30 mins.

° 2 °C, 10 mg catalyst, 29 bar 5% H₂/CO₂, 8.5 g solvent (5.6 g CH₃OH + 2.22 g H₂O + 0.68 g 50% H₂O₂ (10 mmol)) 1200 rpm, 30 mins.

Figure S1 - Cl (1s) X-ray photoemission spectroscopy of the 1% Pd / C carbon catalyst prepared by wet impregnation from aqua regia and dried under N_2 at 140 °C showing organic (~200 eV) and inorganic Cl (~198 eV) species.

Figure S2 – Representative TEM image and particle size distribution of a 1% Pd/C prepared by sol immobilization as a comparative catalyst containing metallic nanoparticles.

Figure S3 – XAFS fitting parameters of fresh (a) and used (direct synthesis) (b) $PdCl_x/C$ to determine Pd-Cl first shell co-ordination using Demeter software package.

Table S3 - EXAFS distances and fitting parameters for the Pd/C catalyst, fresh and used.

Sample	Absorber- Scatterer	R (X) Å	CN	2σ ² (X)	$\Delta E_0(eV)$	R _{factor}
Pd/C - Fresh	Pd-Cl	2.308 ± 0.008	3.99 ± 0.4	0.0016 ± 0.0012	4.5 ± 1.05	0.005
Pd/C - Used	Pd-Cl	2.305 ± 0.01	3.85 ± 0.5	0.002 ± 0.0016	4.7 ± 1.41	0.01

R (X) = radial distance, $2\sigma^2(X)$ = Debye-Waller factor, CN = Coordination number

Fitting parameters: $S_0^2 = 0.8$ as deduced by Pd foil reference; fit range $3 \le k \le 9.5$, $1.2 \le R \le 2.8$.

Figure S4 – Cyclic voltammetry of $PdCl_x/C$ in 0.1M $HClO_4$, $Ar_{sat.}$ before and after 1000 potential cycles between 0.05 - 0.8V.

Figure S5 – Comparison of various catalysts towards the electrochemical reduction of oxygen towards H_2O_2 . Adapted from Reference ¹. The original references are Pt-Hg(pc)², Pd-Hg(pc)³, Pt/SC⁴, Pt/TiN⁵, RF-AQ/VC, VC, Vulcan XC72;⁶ N/C⁷; Pd-Au/C⁸, Au⁹; Au-Pd/NP¹⁰; Ag-Hg (pc), Ag².

References

1. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L., Toward the Decentralized Electrochemical Production of H₂O₂: A Focus on the Catalysis. *ACS Catalysis* **2018**, 8 (5), 4064-4081.

2. Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E. L.; Rossmeisl, J., Enabling direct H₂O₂ production through rational electrocatalyst design. *Nature Materials* **2013**, 12 (12), 1137-1143.

 Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L., Trends in the Electrochemical Synthesis of H₂O₂: Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. *Nano Letters* 2014, 14 (3), 1603-1608.
 Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H.-T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. *Nature Communications* 2016, 7 (1), 10922.

5. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H., Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions. *Angewandte Chemie International Edition* **2016**, 55 (6), 2058-2062.

6. Wang, A.; Bonakdarpour, A.; Wilkinson, D. P.; Gyenge, E., Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide. *Electrochimica Acta* **2012**, 66, 222-229.

7. Hasché, F.; Oezaslan, M.; Strasser, P.; Fellinger, T.-P., Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. *Journal of Energy Chemistry* 2016, 25 (2), 251-257.
8. Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J., Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H₂O₂ Production. *Journal of the American Chemical Society* 2011, 133 (48), 19432-19441.

9. Jirkovský, J. S.; Halasa, M.; Schiffrin, D. J., Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles. *Physical Chemistry Chemical Physics* 2010, 12 (28), 8042-8053.
10. Pizzutilo, E.; Kasian, O.; Choi, C. H.; Cherevko, S.; Hutchings, G. J.; Mayrhofer, K. J. J.; Freakley, S. J., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. *Chemical Physics Letters* 2017, 683, 436-442.