ReaxFF Potential Functions

Supporting information for the manuscript “4 ReaxF'F Reactive Force Field for Molecular
Dynamics Simulations of Hydrocarbon Oxidation” by Kimberly Chenoweth, Adri C.T. van Duin
and William A. Goddard, III

This document contains all the general ReaxFF-potential functions. In the current ReaxFF
code all the energy contributions in this document are calculated regardless of system
composition. All parameters that do not bear a direct physical meaning are named after the
partial energy contribution that they appear in. For example, p,.; and p,.;; are parameters in the
valence angle potential function. Parameters with a more direct physical meaning, like the

torsional rotational barriers (V;, V5, V3) bear their more recognizable names.

1. Overall system energy
Equation (1) describes the ReaxFF overall system energy.
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Below follows a description of the partial energies introduced in equation (1).
2. Bond Order and Bond Energy

A fundamental assumption of ReaxFF is that the bond order BO’;; between a pair of atoms can
be obtained directly from the interatomic distance 7;; as given in Equation (2). In calculating the

bond orders, ReaxFF distinguishes between contributions from sigma bonds, pi-bonds and

double pi bonds.
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Based on the uncorrected bond orders BO’, derived from Equation 1, an uncorrected
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overcoordination A’ can be defined for the atoms as the difference between the total bond order

around the atom and the number of its bonding electrons Val.
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ReaxFF then uses these uncorrected overcoordination definitions to correct the bond orders
BO’jj using the scheme described in Equations (4a-f). To soften the correction for atoms bearing
lone electron pairs a second overcoordination definition A’ (equation 3b) is used in equations
4e and 4f. This allows atoms like nitrogen and oxygen, which bear lone electron pairs after

filling their valence, to break up these electron pairs and involve them in bonding without

obtaining a full bond order correction.
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A corrected overcoordination A; can be derived from the corrected bond orders using equation

).
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Equation (6) is used to calculate the bond energies from the corrected bond orders BO;;
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3. Lone pair energy

Equation (8) is used to determine the number of lone pairs around an atom. A/ is determined
in Equation (7) and describes the difference between the total number of outer shell electrons (6

for oxygen, 4 for silicon, 1 for hydrogen) and the sum of bond orders around an atomic center.
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For oxygen with normal coordination (total bond order=2, A/=4), equation (8) leads to 2 lone
pairs. As the total bond order associated with a particular O starts to exceed 2, equation (8)
causes a lone pair to gradually break up, causing a deviation A”, defined in equation (9), from

the optimal number of lone pairs n,, ,,, (€.g. 2 for oxygen, O for silicon and hydrogen).

Ip _
Ai - nlp,opt - nlp,i (9)

This is accompanied by an energy penalty, as calculated by equation (10).
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4. Overcoordination

For an overcoordinated atom (A>0), equations (1la-b) impose an energy penalty on the
system. The degree of overcoordination A is decreased if the atom contains a broken-up lone
electron pair. This is done by calculating a corrected overcoordination (equation 11b), taking the

deviation from the optimal number of lone pairs, as calculated in equation (9), into account.
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5. Undercoordination

For an undercoordinated atom (A;<0), we want to take into account the energy contribution
for the resonance of the m-electron between attached under-coordinated atomic centers. This is
done by equations 12 where E,,q- 1s only important if the bonds between under-coordinated

atom i and its under-coordinated neighbors j partly have m-bond character.
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6. Valence Angle Terms

6.1 Angle energy. Just as for bond terms, it is important that the energy contribution from
valence angle terms goes to zero as the bond orders in the valence angle goes to zero. Equations
(13a-g) are used to calculate the valence angle energy contribution. The equilibrium angle ®, for
O depends on the sum of m-bond orders (SBO) around the central atom j as described in
Equation (13d). Thus, the equilibrium angle changes from around 109.47 for sp> hybridization
(m-bond=0) to 120 for sp” (m-bond=1) to 180 for sp (n-bond=2) based on the geometry of the
central atom j and its neighbors. In addition to including the effects of m-bonds on the central
atom j, Equation (13d) also takes into account the effects of over- and under-coordination in
central atom j, as determined by equation (13e), on the equilibrium valency angle, including the

langle

influence of a lone electron pair. Va is the valency of the atom used in the valency and

"¢ is the same as Val”* used in equation (3¢) for non-metals. The

torsion angle evaluation. Va
functional form of Equation (13f) is designed to avoid singularities when SBO=0 and SBO=2.

The angles in Equations (13a)-(13g) are in radians.
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6.2 Penalty energy. To reproduce the stability of systems with two double bonds sharing an
atom in a valency angle, like allene, an additional energy penalty, as described in Equations
(14a) and (14b), is imposed for such systems. Equation (9b) deals with the effects of

over/undercoordination in central atom j on the penalty energy.
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6.3 Three-body conjugation term. The hydrocarbon ReaxFF potential contained only a four-
body conjugation term (see section 7.2), which was sufficient to describe most conjugated
hydrocarbon systems. However, this term failed to describe the stability obtained from
conjugation by the -NO,-group. To describe the stability of such groups a three-body

conjugation term is included (equation 15).
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7. Torsion angle terms

7.1 Torsion rotation barriers. Just as with angle terms we need to ensure that dependence of
the energy of torsion angle w;; accounts properly for BO — 0 and for BO greater than 1. This is
done by Equations (16a)-(16c).
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7.2 Four body conjugation term. Equations (17a-b) describe the contribution of conjugation
effects to the molecular energy. A maximum contribution of conjugation energy is obtained

when successive bonds have bond order values of 1.5 as in benzene and other aromatics.
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8. Hydrogen bond interactions
Equation (18) described the bond-order dependent hydrogen bond term for a X-H—Z system

as incorporated in ReaxFF.
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9. Correction for C,

ReaxFF erroneously predicts that two carbons in the C,-molecule form a very strong (triple)
bond, while in fact the triple bond would get de-stabilized by terminal radical electrons, and for
that reason the carbon-carbon bond is not any stronger than a double bond. To capture the
stability of C, we introduced a new partial energy contribution (Ecz). Equation (19) shows the

potential function used to de-stabilize the G molecule:
Eey =k, (BO, A, ~0.04-A =3) if BO, - A, -0.04-A' >3
E.,=0 ifBOl.j—Ai—0.04-A‘fs3

where A; is the level of under/overcoordination on atom 1 as obtained from subtracting the

valency of the atom (4 for carbon) from the sum of the bond orders around that atom and k., the

force field parameter associated with this partial energy contribution.

11. Triple bond energy correction.

To describe the triple bond in carbon monoxide a triple bond stabilization energy is used,
making CO both stable and inert. This energy term only affects C-O bonded pairs. Equation (20)
shows the energy function used to describe the triple bond stabilization energy.
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12. Nonbonded interactions

In addition to valence interactions which depend on overlap, there are repulsive interactions at
short interatomic distances due to Pauli principle orthogonalization and attraction energies at
long distances due to dispersion. These interactions, comprised of van der Waals and Coulomb
forces, are included for all atom pairs, thus avoiding awkward alterations in the energy
description during bond dissociation.

12.1 Taper correction. To avoid energy discontinuities when charged species move in and

out of the non-bonded cutoff radius ReaxFF employs a Taper correction, as developed by de Vos



Burchart (1995). Each nonbonded energy and derivative is multiplied by a Taper-term, which is
taken from a distance-dependent 7" order polynomial (equation 21)).
Tap =Tap, - r; + Tap, - r; +Tap, r; +Tap, - r; +Tap, - r; +Tap, r; +Tap, - r; + Tap, (21)
The terms in this polynomal are chosen to ensure that all 1%, 2" and 3™ derivatives of the non-
bonded interactions to the distance are continuous and go to zero at the cutoff boundary. To that
end, the terms Tap, to Tap; in equation (21) are calculated by the scheme in equation (22), where

Ryt 18 the non-bonded cutoff radius.
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12.2 van der Waals interactions. To account for the van der Waals interactions we use a
distance-corrected Morse-potential (Equations. 23a-b). By including a shielded interaction
(Equation 23b) excessively high repulsions between bonded atoms (1-2 interactions) and atoms
sharing a valence angle (1-3 interactions) are avoided.
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12.3 Coulomb Interactions
As with the van der Waals-interactions, Coulomb interactions are taken into account between
all atom pairs. To adjust for orbital overlap between atoms at close distances a shielded

Coulomb-potential is used (Equation 24).
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Atomic charges are calculated using the Electron Equilibration Method (EEM)-approach.

coulomb

The EEM charge derivation method is similar to the QEg-scheme; the only differences, apart
from parameter definitions, are that EEM does not use an iterative scheme for hydrogen charges
(as in QEq) and that QEq uses a more rigorous Slater orbital approach to account for charge

overlap.
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