
About the Cover:
The cover art features a scheme of artificial photosynthetic solar energy conversion. Inspired by the natural photosynthesis in plants, we have synthesized noble-metal-free iron phosphide (FeP) nanodot-modified porous graphitic carbon nitride (g-C3N4) as the photocatalyst for solar-to-hydrogen generation. Our experimental results demonstrate that the FeP/g-C3N4 heterostructure composite can effectively boost photocatalytic hydrogen evolution under visible light without the presence of Pt noble metals.
View the article.Artificial Photosynthesis: Harnessing Materials and Interfaces for Sustainable Fuels Editorial

Learning from Natural Leaves: Going Green with Artificial Photosynthesis Forum
Wee-Jun Ong
This publication is free to access through this site. Learn More
Forum Articles

TiO2–MnOx–Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO2-Reduction Activity
Aiyun Meng - ,
Liuyang Zhang - ,
Bei Cheng - , and
Jiaguo Yu *
Photocatalytic CO2 conversion into solar fuels has an alluring prospect. However, the rapid recombination of photogenerated electron–hole pairs for TiO2-based photocatalyst hinders its wide application. To alleviate this bottleneck, a ternary hybrid TiO2–MnOx–Pt composite is excogitated. Taking advantage of the surface junction between {001} and {101} facets, MnOx nanosheets and Pt nanoparticles are selectively deposited on each facet by a facile photodeposition method. This design accomplishes the formation of two heterojunctions: p–n junction between MnOx and TiO2 {001} facet and metal–semiconductor junction between Pt and TiO2 {101} facet. Both of them, together with the surface heterojunction between {001} and {101} facets, are contributive to the spatial separation of the photogenerated electron–hole pairs. Thanks to their cooperative and synergistic effect, the as-prepared composite photocatalyst exhibits a promoted yield of CH4 and CH3OH, which is over threefold of pristine TiO2 nanosheets films. The conjecture of the mechanism that selective formation of multijunction structure maximizes the separation and transfer efficiency of photogenerated charge carriers is proved by the photoelectrochemical analysis. This work not only successfully achieves an efficient multijunction photocatalyst by ingenious design but also provides insight into the mechanism of the performance enhancement.

Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction
Christian Dette - ,
Michael R. Hurst - ,
Jiang Deng - ,
Michael R. Nellist - , and
Shannon W. Boettcher *
Metal (oxy)hydroxides (MOxHy, M = Fe, Co, Ni, and mixtures thereof) are important materials in electrochemistry. In particular, MOxHy are the fastest known catalysts for the oxygen evolution reaction (OER) in alkaline media. While key descriptors such as overpotentials and activity have been thoroughly characterized, the nanostructure and its dynamics under electrochemical conditions are not yet fully understood. Here, we report on the structural evolution of Ni1−δCoδOxHy nanosheets with varying ratios of Ni to Co, in operando using atomic force microscopy during electrochemical cycling. We found that the addition of Co to NiOxHy nanosheets results in a higher porosity of the as-synthesized nanosheets, apparently reducing mechanical stress associated with redox cycling and hence enhancing stability under electrochemical conditions. As opposed to nanosheets composed of pure NiOxHy, which dramatically reorganize under electrochemical conditions to form nanoparticle assemblies, restructuring is not found for Ni1−δCoδOxHy with a high Co content. Ni0.8Fe0.2OxHy nanosheets show high roughness as-synthesized which increases during electrochemical cycling while the integrity of the nanosheet shape is maintained. These findings enhance the fundamental understanding of MOxHy materials and provide insight into how nanostructure and composition affect structural dynamics at the nanoscale.

Effects of Se Incorporation in La5Ti2CuS5O7 by Annealing on Physical Properties and Photocatalytic H2 Evolution Activity
Swarnava Nandy - ,
Takashi Hisatomi - ,
Song Sun - ,
Masao Katayama - ,
Tsutomu Minegishi - , and
Kazunari Domen *
Oxysulfoselenide semiconductor photocatalysts absorb light at longer wavelengths than the corresponding oxysulfides. However, the synthesis of oxysulfoselenides is challenging due to excessive particle growth and the limited availability of metal selenide precursors. In this study, a La5Ti2CuS5O7 (LTCSO) oxysulfide was annealed with Se powder in sealed, evacuated quartz tubes to obtain LTCSO:Se photocatalysts, and the properties of these materials were investigated. Se was found to be incorporated into the LTCSO upon heating at 973 K or higher, and the Se/(S + Se) ratio was increased to a maximum of 0.3 upon repeating the heat treatment twice. The addition of Se extended the absorption edge of the LTCSO and thus increased its photocatalytic H2 evolution activity at longer wavelength. Even so, the apparent quantum yield at shorter wavelengths was reduced, which is similar to the results obtained for La5Ti2Cu(S1–xSex)5O7 (LTCS1–xSexO) solid solutions. Overall water splitting was achieved by constructing photocatalyst sheets using LTCSO:Se and LTCS1–xSexO as hydrogen evolution photocatalysts and BiVO4 as an oxygen evolution photocatalyst. Heat treatment with Se is evidently an effective method for the transformation of oxysulfide photocatalysts to oxysulfoselenides that promote photocatalytic H2 evolution and have longer absorption edge wavelengths.

Silatrane Anchors for Metal Oxide Surfaces: Optimization for Potential Photocatalytic and Electrocatalytic Applications
Kelly L. Materna - ,
Jianbing Jiang - ,
Robert H. Crabtree - , and
Gary W. Brudvig *
Silatrane surface anchors are protected siloxanes that are known to bond firmly (from pH 2–11) to metal oxide electrodes under heating. However, these conditions are not always compatible with the other functionality present. A silatrane-containing porphyrin molecule and a silatrane-containing ruthenium complex have now been designed, synthesized and optimized conditions have been identified for surface binding. Two mild, room-temperature surface binding methods were explored: binding with or without an acidic pretreatment; these methods were compared to the traditional, harsher binding conditions involving strong heating. We find that a preacidified electrode gave comparable surface loadings at room temperature compared to sensitization by using the previous strong heating method. This was also true on TiO2, SnO2, and nanoITO electrodes and thus may be generalizable. The new, milder binding methods also resulted in excellent aqueous and electrochemical stability from pH 2–11. Using a water-insoluble porphyrin with a silatrane anchor further increased the aqueous stability of the deposit, aided by the insolubility of the porphyrin. Finally, X-ray photoelectron spectroscopy (XPS) data confirmed for the first time that the triethanolamine released from the silatrane on deprotection/binding in turn binds to TiO2, SnO2, and nanoITO electrodes. This undesired triethanolamine deposit was easily removed from the surface by electrochemical voltage cycling or with an aqueous acidic wash for 1 h.

Pd@HyWO3–x Nanowires Efficiently Catalyze the CO2 Heterogeneous Reduction Reaction with a Pronounced Light Effect
Young Feng Li - ,
Navid Soheilnia - ,
Mark Greiner - ,
Ulrich Ulmer - ,
Thomas Wood - ,
Feysal M. Ali - ,
Yuchan Dong - ,
Annabelle Po Yin Wong - ,
Jia Jia - , and
Geoffrey A. Ozin *
The design of photocatalysts able to reduce CO2 to value-added chemicals and fuels could enable a closed carbon circular economy. A common theme running through the design of photocatalysts for CO2 reduction is the utilization of semiconductor materials with high-energy conduction bands able to generate highly reducing electrons. Far less explored in this respect are low-energy conduction band materials such as WO3. Specifically, we focus attention on the use of Pd nanocrystal decorated WO3 nanowires as a heretofore-unexplored photocatalyst for the hydrogenation of CO2. Powder X-ray diffraction, thermogravimetric analysis, ultraviolet–visible-near infrared, and in situ X-ray photoelectron spectroscopy analytical techniques elucidate the hydrogen tungsten bronze, HyWO3–x, as the catalytically active species formed via the H2 spillover effect by Pd. The existence in HyWO3–x of Brønsted acid hydroxyls OH, W(V) sites, and oxygen vacancies (VO) facilitate CO2 capture and reduction reactions. Under solar irradiation, CO2 reduction attains CO production rates as high as 3.0 mmol gcat–1 hr–1 with a selectivity exceeding 99%. A combination of reaction kinetic studies and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements provide a valuable insight into thermochemical compared to photochemical surface reaction pathways, considered responsible for the hydrogenation of CO2 by Pd@HyWO3–x.

Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions
Wei Li - ,
Ke R. Yang - ,
Xiahui Yao - ,
Yumin He - ,
Qi Dong - ,
Gary W. Brudvig - ,
Victor S. Batista - , and
Dunwei Wang *
The performance of a photoelectrochemical (PEC) system is highly dependent on the charge separation, transport and transfer characteristics at the photoelectrode|electrolyte interface. Of the factors that influence the charge behaviors, the crystalline facets of the semiconductor in contact with the electrolyte play an important role but has been poorly studied previously. Here, we present a study aimed at understanding how the different facets of hematite affect the charge separation and transfer behaviors in a solar water oxidation reaction. Specifically, hematite crystallites with predominantly {012} and {001} facets exposed were synthesized. Density functional theory (DFT) calculations revealed that hematite {012} surfaces feature higher OH coverage, which was confirmed by X-ray photoelectron spectroscopy (XPS). These surface OH groups act as active sites to mediate water oxidation reactions, which plays a positive role for the PEC system. These surface OH groups also facilitate charge recombination, which compromises the charge separation capabilities of hematite. Indeed, intensity modulated photocurrent spectroscopy (IMPS) confirmed that hematite {012} surfaces exhibit higher rate constants for both charge transfer and recombination. Open circuit potential (OCP) measurements revealed that the hematite {012} surface exhibits a greater degree of Fermi level pinning effect. Our results shed light on how different surface crystal structures may change surface kinetics and energetics. The information is expected to contribute to efforts on optimizing PEC performance for practical solar fuel synthesis.

Conformal BiVO4-Layer/WO3-Nanoplate-Array Heterojunction Photoanode Modified with Cobalt Phosphate Cocatalyst for Significantly Enhanced Photoelectrochemical Performances
Xueliang Zhang - ,
Xin Wang - ,
Defa Wang *- , and
Jinhua Ye *
Constructing semiconductor heterojunctions via surface/interface engineering is an effective way to enhance the charge carrier separation/transport ability and thus the photoelectrochemical (PEC) properties of a photoelectrode. Herein, we report a conformal BiVO4-layer/WO3-nanoplate-array heterojunction photoanode modified with cobalt phosphate (Co-Pi) as oxygen evolution cocatalyst (OEC) for significant enhancement in PEC performances. The BiVO4/WO3 nanocomposite is fabricated by coating a thin conformal BiVO4 layer on the surface of presynthesized WO3 nanoplate arrays (NPAs) via stepwise spin-coating, and the decoration of Co-Pi OEC is realized by photoassisted electrodeposition method. The optimized Co-Pi@BiVO4/WO3 heterojunction photoanode shows a maximum photocurrent of 1.8 mA/cm2 at 1.23 V vs RHE in a phosphate buffer electrolyte under an AM1.5G solar simulator, which is 5 and 12 times higher than those of bare WO3 and BiVO4 photoanode, respectively. Measurements of UV–vis absorption spectra, electrochemical impedance spectra (EIS) and photoluminescence (PL) spectra reveal that the enhanced PEC performances can be attributed to the increased charge carrier separation/transport benefited from the type II nature of BiVO4/WO3 heterojunction and the promoted water oxidation kinetics and photostability owing to the decoration of Co-Pi cocatalyst.

Photoelectrochemical CO2 Reduction Using a Ru(II)–Re(I) Supramolecular Photocatalyst Connected to a Vinyl Polymer on a NiO Electrode
Ryutaro Kamata - ,
Hiromu Kumagai - ,
Yasuomi Yamazaki - ,
Go Sahara - , and
Osamu Ishitani *
A Ru(II)–Re(I) supramolecular photocatalyst and a Ru(II) redox photosensitizer were both deposited successfully on a NiO electrode by using methyl phosphonic acid anchoring groups and the electrochemical polymerization of the ligand vinyl groups of the complexes. This new molecular photocathode, poly-RuRe/NiO, adsorbed a larger amount of the metal complexes compared to one using only methyl phosphonic acid anchor groups, and the stability of the complexes on the NiO electrode were much improved. The poly-RuRe/NiO acted as a photocathode for the photocatalytic reduction of CO2 at E = −0.7 V vs Ag/AgCl under visible-light irradiation in an aqueous solution. The poly-RuRe/NiO produced approximately 2.5 times more CO, and its total Faradaic efficiency of the reduction products improved from 57 to 85%.

Flux Synthesis of Layered Oxyhalide Bi4NbO8Cl Photocatalyst for Efficient Z-Scheme Water Splitting Under Visible Light
Kanta Ogawa - ,
Akinobu Nakada - ,
Hajime Suzuki - ,
Osamu Tomita - ,
Masanobu Higashi - ,
Akinori Saeki - ,
Hiroshi Kageyama *- , and
Ryu Abe *
An oxyhalide photocatalyst Bi4NbO8Cl has recently been proven to stably oxidize water under visible light, enabling the Z-scheme water splitting when coupled with another photocatalyst for water reduction. We herein report the synthesis of Bi4NbO8Cl particles via a flux method, testing various molten salts to improve its crystallinity and hence photocatalytic activity. The eutectic mixture of CsCl/NaCl with a low melting point allowed the formation of single-phase Bi4NbO8Cl at as low as 650 °C. Thus, synthesized Bi4NbO8Cl particles exhibited a well-grown and plate-like shape while maintaining surface area considerably higher than those grown with others fluxes. They showed three times higher O2 evolution rate under visible light than the samples prepared via a solid-state reaction. Time-resolved microwave conductivity measurements revealed greater signals (approximately 4.8 times) owing to the free electrons in the conduction band, indicating much improved efficiency of carrier generation and/or its mobility. The loading of RuO2 or Pt cocatalyst on Bi4NbO8Cl further enhanced the activity for O2 evolution because of efficient capturing of free electrons, facilitating the surface chemical reactions. In combination with a H2-evolving photocatalyst Ru/SrTiO3:Rh along with an Fe3+/Fe2+ redox mediator, the RuO2/Bi4NbO8Cl is an excellent O2-evolving photocatalyst, exhibiting highly effective water splitting into H2 and O2 via the Z-scheme.

Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C3N4 for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light
Deqian Zeng *- ,
Ting Zhou - ,
Wee-Jun Ong *- ,
Mingda Wu - ,
Xiaoguang Duan - ,
Wanjie Xu - ,
Yuanzhi Chen *- ,
Yi-An Zhu - , and
Dong-Liang Peng
Sub-5 nm ultra-fine iron phosphide (FeP) nano-dots-modified porous graphitic carbon nitride (g-C3N4) heterojunction nanostructures are successfully prepared through the gas-phase phosphorization of Fe3O4/g-C3N4 nanocomposites. The incorporation of zero-dimensional (0D) ultra-small FeP nanodots co-catalysts not only effectively facilitate charge separation but also serve as reaction active sites for hydrogen (H2) evolution. Herein, the strongly coupled FeP/g-C3N4 hybrid systems are employed as precious-metal-free photocatalysts for H2 production under visible-light irradiation. The optimized FeP/g-C3N4 sample displays a maximum H2 evolution rate of 177.9 μmol h–1 g–1 with the apparent quantum yield of 1.57% at 420 nm. Furthermore, the mechanism of photocatalytic H2 evolution using 0D/2D FeP/g-C3N4 heterojunction interfaces is systematically corroborated by steady-state photoluminescence (PL), time-resolved PL spectroscopy, and photoelectrochemical results. Additionally, an increased donor density in FeP/g-C3N4 is evidenced from the Mott–Schottky analysis in comparison with that of parent g-C3N4, signifying the enhancement of electrical conductivity and charge transport owing to the emerging role of FeP. The density functional theory calculations reveal that the FeP/g-C3N4 hybrids could act as a promising catalyst for the H2 evolution reaction. Overall, this work not only paves a new path in the engineering of monodispersed FeP-decorated g-C3N4 0D/2D robust nanoarchitectures but also elucidates potential insights for the utilization of noble-metal-free FeP nanodots as remarkable co-catalysts for superior photocatalytic H2 evolution.
Letters

Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis
Lucas D. Germano - ,
Valeria S. Marangoni - ,
Naga V. V. Mogili - ,
Leandro Seixas *- , and
Camila M. Maroneze *
The ability to tune the electronic properties of nanomaterials has played a major role in the development of sustainable energy technologies. Metallic nanocatalysts are at the forefront of these advances. Their unique properties become even more interesting when we can control the distribution of the electronic states in the nanostructure. Here, we provide a comprehensive evaluation of the electronic surface states in ultrasmall metallic nanostructures by combining experimental and theoretical methods. The developed strategy allows the controlled synthesis of bimetallic nanostructures in the core–shell configuration, dispensing of the use of any surfactant or stabilizing agents, which usually inactivate important surface phenomena. The synthesized ultrasmall Au@Pt nanoarchitecture (∼1.8 nm) presents an enhanced performance catalyzing the hydrogen evolution reaction. First-principles calculations of projected and space-resolved local density of states of Au55@Pt92 (core–shell), Au55Pt92 (alloy), and Pt147 nanoparticles show a prominent increase in the surface electronic states for the core–shell bimetallic nanomaterial. It arises from a more-effective charge transfer from gold to the surface platinum atoms in the core–shell configuration. In pure Pt147 or Au55Pt92 alloy nanoparticles, a great part of the electronic states near the Fermi level is buried in the core atoms, disabling these states for catalytic applications. The proposed experimental–theoretical approach may be useful for the design of other systems composed of metallic nanoparticles supported on distinct substrates, such as two-dimensional materials and porous matrices. These nanomaterials find several applications not only in heterogeneous catalysis but also in sensing and optoelectronic devices.

Copolymer Solid-State Electrolytes for 3D Microbatteries via Initiated Chemical Vapor Deposition
Wenhao Li - ,
Laura C. Bradley *- , and
James J. Watkins *
Reliable integration of thin film solid-state polymer electrolytes (SPEs) with 3D electrodes is one major challenge in microbattery fabrication. We used initiated chemical vapor deposition (iCVD) to produce a series of nanoscale copolymer films comprising hydroxyethyl methacrylate and ethylene glycol diacrylate. Conformal copolymer coatings were applied to a variety of patterned 3D electrodes and subsequently converted into ionic conductors by lithium salt doping. Broad tunability in ionic conductivity was achieved by optimizing the copolymer cross-linking density and matrix polarity, resulting in a room-temperature conductivity of (6.1 ± 2.7) × 10–6 S cm–1, the highest value reported for conformal, nanoscale SPEs.

Fully Inkjet-Printed, Mechanically Flexible MoS2 Nanosheet Photodetectors
Jung-Woo Ted Seo - ,
Jian Zhu - ,
Vinod K. Sangwan - ,
Ethan B. Secor - ,
Shay G. Wallace - , and
Mark C. Hersam *
Solution-processed two-dimensional materials offer a scalable route toward next-generation printed devices. In this report, we demonstrate fully inkjet-printed photodetectors using molybdenum disulfide (MoS2) nanosheets as the active material and graphene as the electrodes. Percolating films of semiconducting MoS2 with high electrical conductivity are achieved with an ethyl cellulose-based ink formulation. Two classes of photodetectors are fabricated, including thermally annealed devices on glass with fast photoresponse of 150 μs and photonically annealed devices on flexible polyimide with high photoresponsivity exceeding 50 mA/W. The photonically annealed photodetector also reduces the curing time to milliseconds and maintains functionality over 500 bending cycles.

Influence of Fe Substitution into LaCoO3 Electrocatalysts on Oxygen-Reduction Activity
Maoyu Wang - ,
Binghong Han - ,
Junjing Deng - ,
Yi Jiang - ,
Mingyue Zhou - ,
Marcos Lucero - ,
Yan Wang - ,
Yubo Chen - ,
Zhenzhen Yang - ,
Alpha T N’Diaye - ,
Qing Wang - ,
Zhichuan J. Xu - , and
Zhenxing Feng *
The development of commercially friendly and stable catalysts for oxygen reduction reaction (ORR) is critical for many energy conversion systems such as fuel cells and metal–air batteries. Many Co-based perovskite oxides such as LaCoO3 have been discovered as the stable and active ORR catalysts, which can be good candidates to replace platinum (Pt). Although researchers have tried substituting various transition metals into the Co-based perovskite catalysts to improve the ORR performance, the influence of substitution on the ORR mechanism is rarely studied. In this paper, we explore the evolution of ORR mechanism after substituting Fe into LaCoO3, using the combination of X-ray photoelectron spectroscopy, high-resolution X-ray microscopy, X-ray diffraction, surface-sensitive soft X-ray absorption spectroscopy characterization, and electrochemical tests. We observed enhanced catalytic activities and increased electron transfer numbers during the ORR in Co-rich perovskite, which are attributed to the optimized eg filling numbers and the stronger hybridization of transition metal 3d and oxygen 2p bands. The discoveries in this paper provide deep insights into the ORR catalysis mechanism on metal oxides and new guidelines for the design of Pt-free ORR catalysts.

Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries
Yingze Song - ,
Shuyang Zhao - ,
Yiran Chen - ,
Jingsheng Cai - ,
Jia Li *- ,
Quanhong Yang *- ,
Jingyu Sun *- , and
Zhongfan Liu
Lithium–sulfur (Li–S) batteries have now emerged as the next-generation rechargeable energy storage system because of the high energy density and theoretical capacity. However, the notorious “lithium polysulfide (LiPS) shuttle” and sluggish kinetics in sulfur redox have posted great threat to their practical applications. Herein, we develop a VN-modified separator as an effective promoter to regulate the LiPSs and accelerate the electrochemical kinetics of Li–S batteries. Benefiting from the dense packing structure and polar surface of porous VN, the VN-modified separator favorably synergizes bifunctionality of physical confinement and chemical entrapment toward LiPSs while affording smooth lithium-ion migration. In addition, the superb electrical conductivity of VN also propels the LiPS conversion. With these advantages, thus-integrated batteries with VN-modified separator exhibit an average capacity decay of 0.077% per cycle at 1 C for 800 cycles. A reasonable areal capacity of 4.2 mAh cm–2 is achieved even with a high sulfur mass loading of 3.8 mg cm–2 at 0.2 C. The present work offers a rational strategy to regulate the LiPS behavior and guide the sulfur redox kinetics toward effective and long-life Li–S batteries.

Dynamic Supramolecular Hydrogels Spanning an Unprecedented Range of Host–Guest Affinity
Lei Zou - ,
Adam S. Braegelman - , and
Matthew J. Webber *
Cucurbit[7]uril (CB[7]) macrocycles exhibit a broad range of host–guest binding affinity. Attaching pendant CB[7] and complementary guests on 8-arm PEG macromers affords supramolecular hydrogels with cross-link affinity spanning more than 5 orders of magnitude (1.5 × 107 to 5.4 × 1012 M–1) without changing network topology. Cross-link affinity translates directly to bulk dynamic properties; hydrogels with high-affinity cross-linking behave like covalent gels with limited ability to relax or self-heal. Cross-link affinity furthermore dictates the release rate of encapsulated macromolecules, as well as cell infiltration and material clearance in vivo. This work thus informs a role for affinity in dictating supramolecular hydrogel properties by quantifying and isolating this feature over an unprecedented range.
Biological and Medical Applications of Materials and Interfaces

PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release
Mengzhen Xu - ,
Can Yang Zhang - ,
Junguang Wu - ,
Huige Zhou - ,
Ru Bai - ,
Ziyi Shen - ,
Fangling Deng - ,
Ying Liu *- , and
Jing Liu *
The development of an intelligent biomaterial system that can efficiently accumulate at the tumor site and release a drug in a controlled way is very important for cancer chemotherapy. PEG is widely selected as a hydrophilic shell to acquire prolonged circulation time and enhanced accumulation at the tumor site, but it also restrains the cellular transport and uptake and leads to insufficient therapeutic efficacy. In this work, a PEG-detachable pH-responsive polymer that forms micelles from copolymer cholesterol grafted poly(ethylene glycol) methyl ether-Dlabile-poly(β-amino ester)-Dlabile-poly(ethylene glycol) methyl ether (MPEG-Dlabile-PAE-g-Chol) is developed to overcome the aforementioned challenges based on pH value changes among normal physiological, extracellular (pHe), and intracellular (pHi) environments. PEGylated doxorubicin (DOX)-loaded polymeric micelles (DOX-PMs) can accumulate at the tumor site via an enhanced permeability and retention effect, and the PEG shell is detachable induced by cleavage of the pHe-labile linker between the PEG segment and the main chain. Meanwhile, the pHi-sensitive poly(β-amino ester) segment is protonated and has a high positive charge. The detachment of PEG and protonation of PAE facilitate cellular uptake of DOX-PMs by negatively charged tumor cells, along with the escape from endo-/lysosome due to the “proton-sponge” effect. The DOX molecules are controlled release from the carriers at specific pH values. The results demonstrate that DOX-PMs have the capability of showing high therapeutic efficacy and negligible cytotoxicity compared with free DOX in vitro and in vivo. Overall, we anticipate that this PEG-detachable and tumor-acidity-responsive polymeric micelle can mediate effective and biocompatible drug delivery “on demand” with clinical application potential.

Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting
Ashley M. Compaan - ,
Kaidong Song - , and
Yong Huang *
Biomedical applications of three-dimensional (3D) printing demand complex hydrogel-based constructs laden with living cells. Advanced support materials facilitate the fabrication of such constructs. This work demonstrates the versatility and utility of a gellan fluid gel as a support bath material for fabricating freeform 3D hydrogel constructs from a variety of materials. Notably, the gellan fluid gel support bath can supply sensitive biological cross-linking agents such as enzymes to printed fluid hydrogel precursors for mild covalent hydrogel cross-linking. This mild fabrication approach is suitable for fabricating cell-laden gelatin-based constructs in which mammalian cells can form intercellular contacts within hours of fabrication; cellular activity is observed over several days within printed constructs. In addition, gellan is compatible with a wide range of ionic and thermal conditions, which makes it a suitable support material for ionically cross-linked structures generated by printing alginate-based ink formulations as well as thermosensitive hydrogel constructs formed from gelatin. Ultraviolet irradiation of printed structures within the support bath is also demonstrated for photoinitiated cross-linking of acrylated ink materials. Furthermore, gellan support material performance in terms of printed filament stability and residual support material on constructs is found to be comparable and superior, respectively, to previously reported support materials.

Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy
Binh T. Mai - ,
Preethi B. Balakrishnan - ,
Markus J. Barthel - ,
Federica Piccardi - ,
Dina Niculaes - ,
Federica Marinaro - ,
Soraia Fernandes - ,
Alberto Curcio - ,
Hamilton Kakwere - ,
Gwennhael Autret - ,
Roberto Cingolani - ,
Florence Gazeau - , and
Teresa Pellegrino *
This publication is Open Access under the license indicated. Learn More
The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH. Accomplishing a surface-initiated polymerization of strongly interactive nanoparticles such as our iron oxide nanocubes, however, remains the main challenge to overcome. Here, we demonstrate that it is possible to accelerate the growth of a polymer shell on each nanocube by simple irradiation of a copper-mediated polymerization with a ultraviolet light (UV) light, which both speeds up the polymerization and prevents nanocube aggregation. Moreover, we demonstrate herein that these TR-cubes can carry chemotherapeutic doxorubicin (DOXO-loaded-TR-cubes) without compromising their thermoresponsiveness both in vitro and in vivo. In vivo efficacy studies showed complete tumor suppression and the highest survival rate for animals that had been treated with DOXO-loaded-TR-cubes, only when they were exposed to MH. The biodistribution of intravenously injected TR-cubes showed signs of renal clearance within 1 week and complete clearance after 5 months. This biomedical platform works under clinical MH conditions and at a low iron dosage, which will enable the translation of dual MH/heat-mediated chemotherapy, thus overcoming the clinical limitation of MH: i.e., being able to monitor tumor progression post-MH-treatment by magnetic resonance imaging (MRI).

In Vitro Endothelialization of Surface-Integrated Nanofiber Networks for Stretchable Blood Interfaces
Lukas Weidenbacher - ,
Eike Müller - ,
Anne Géraldine Guex - ,
Manuel Zündel - ,
Peter Schweizer - ,
Vita Marina - ,
Christian Adlhart - ,
Lucie Vejsadová - ,
Robin Pauer - ,
Erdmann Spiecker - ,
Katharina Maniura-Weber - ,
Stephen J. Ferguson - ,
René M. Rossi - ,
Markus Rottmar *- , and
Giuseppino Fortunato *
Despite major technological advances within the field of cardiovascular engineering, the risk of thromboembolic events on artificial surfaces in contact with blood remains a major challenge and limits the functionality of ventricular assist devices (VADs) during mid- or long-term therapy. Here, a biomimetic blood–material interface is created via a nanofiber-based approach that promotes the endothelialization capability of elastic silicone surfaces for next-generation VADs under elevated hemodynamic loads. A blend fiber membrane made of elastic polyurethane and low-thrombogenic poly(vinylidene fluoride-co-hexafluoropropylene) was partially embedded into the surface of silicone films. These blend membranes resist fundamental irreversible deformation of the internal structure and are stably attached to the surface, while also exhibiting enhanced antithrombotic properties when compared to bare silicone. The composite material supports the formation of a stable monolayer of endothelial cells within a pulsatile flow bioreactor, resembling the physiological in vivo situation in a VAD. The nanofiber surface modification concept thus presents a promising approach for the future design of advanced elastic composite materials that are particularly interesting for applications in contact with blood.

Amphiphilic Nanoaggregates with Bimodal MRI and Optical Properties Exhibiting Magnetic Field Dependent Switching from Positive to Negative Contrast Enhancement
Michael Harris - ,
Danai Laskaratou - ,
Luce Vander Elst - ,
Hideaki Mizuno - , and
Tatjana N. Parac-Vogt *
Mixed micelles based on amphiphilic gadolinium(III)-DOTA and europium(III)-DTPA complexes were synthesized and evaluated for their paramagnetic and optical properties as potential bimodal contrast agents. Amphiphilic folate molecule for targeting the folate receptor protein, which is commonly expressed on the surface of many human cancer cells, was used in the self-assembly process in order to create nanoaggregates with targeting properties. Both targeted and nontargeted nanoaggregates formed monodisperse micelles having distribution maxima of 10 nm. The micelles show characteristic europium(III) emission with quantum yields of 2% and 1.1% for the nontargeted and targeted micelles, respectively. Fluorescence microscopy using excitation at 405 nm and emission at 575–675 nm was employed to visualize the nanoaggregates in cultured HeLa cells. The uptake of folate-targeted and nontargeted micelles is already visible after 5 h of incubation and was characterized with the europium(III) emission, which is clearly observable in the cytoplasm of the cells. The very fast longitudinal relaxivity r1 of ca. 26 s–1 mM–1 per gadolinium(III) ion was observed for both micelles at 60 MHz and 310 K. Upon increasing the magnetic field to 300 MHz, the nanoaggregates exhibited a large switching to transversal relaxivity with r2 value of ca. 52 s–1 mM–1 at 310 K. Theoretical fitting of the 1H NMRD profiles indicate that the efficient T1 and T2 relaxations are sustained by the favorable magnetic and electron-configuration properties of the gadolinium(III) ion, rotational correlation time, and coordinated water molecule. These nanoaggregates could have versatile application as a positive contrast agent at the currently used magnetic imaging field strengths and a negative contrast agent in higher field applications, while at the same time offering the possibility for the loading of hydrophobic therapeutics or targeting molecules.

Digital Single Virus Immunoassay for Ultrasensitive Multiplex Avian Influenza Virus Detection Based on Fluorescent Magnetic Multifunctional Nanospheres
Zhen Wu - ,
Tao Zeng - ,
Wen-Jing Guo - ,
Yi-Yan Bai - ,
Dai-Wen Pang - , and
Zhi-Ling Zhang *
The fluorescence method has made great progress in the construction of sensitive sensors but the background fluorescence of the matrix and photobleaching limit its broad application in clinical diagnosis. Here, we propose a digital single virus immunoassay for multiplex virus detection by using fluorescent magnetic multifunctional nanospheres as both capture carriers and signal labels. The superparamagnetism and strong magnetic response ability of nanospheres can realize efficient capture and separation of targets without sample pretreatment. Due to their distinguishable fluorescence imaging and photostability, the nanospheres enable single-particle counting for ultrasensitive multiplexed detection. Furthermore, the integration of digital analysis provided a reliable quantitative strategy for the detection of rare targets. Based on multifunctional nanospheres and digital analysis, a digital single virus immunoassay was proposed for simultaneous detection of H9N2, H1N1, and H7N9 avian influenza virus without complex signal amplification, whose detection limits were 0.02 pg/mL. Owing to its good specificity and anti-interference ability, the method showed great potential in single biomolecules, multiplexed detection, and early diagnosis of diseases.

Ultrasmall MoS2 Nanodots-Doped Biodegradable SiO2 Nanoparticles for Clearable FL/CT/MSOT Imaging-Guided PTT/PDT Combination Tumor Therapy
Peishan Li - ,
Li Liu - ,
Qianglan Lu - ,
Shan Yang - ,
Lifang Yang - ,
Yu Cheng - ,
YiDan Wang - ,
SiYu Wang - ,
YiLin Song - ,
Fengping Tan *- , and
Nan Li *
Recently, we developed ultrasmall molybdenum disulfide (MoS2) quantum dots for computed tomography (CT) and multispectral optoacoustic tomography (MSOT) imaging-guided photothermal therapy (PTT). But, due to rapid body elimination and limited blood circulation time, the tumor uptake of the dots is low. In our study, this problem was solved via designing an amino-modified biodegradable nanomaterial based on MoS2 quantum-dots-doped disulfide-based SiO2 nanoparticles (denoted MoS2@ss-SiO2) for multimodal application. By integrating the MoS2 quantum dots into clearable SiO2 nanoparticles, this nanoplatform with an appropriate particle size can not only degrade and excrete in a reasonable period induced by redox responsiveness of glutathione but also exhibit a high tumor uptake due to the longer blood circulation time. Moreover, hyaluronic acid and chlorin e6 (Ce6) were adsorbed on the outer shell for tumor-targeting effect and photodynamic therapy, respectively. So, this biodegradable and clearable theranostic nanocomposite, which is applicable in integrated fluorescence/CT/MSOT imaging-guided combined photothermal therapy (PTT) and photodynamic therapy, is very promising in biomedical applications in the future.

Photothermal-Controlled Generation of Alkyl Radical from Organic Nanoparticles for Tumor Treatment
Rui Xia - ,
Xiaohua Zheng - ,
Xiuli Hu *- ,
Shi Liu - , and
Zhigang Xie *
The therapeutic properties of light are well known for photodynamic or photothermal therapy, which could cause irreversible photodamage to tumor tissues. Although photodynamic therapy (PDT) has been proved in the clinic, the efficacy is not satisfactory because of complicated tumor microenvironments. For example, the hypoxia in solid tumor has a negative effect on the generation of singlet oxygen. To address the hypoxia issues in PDT, leveraging alkyl radical is an available option due to the oxygen-independent feature. In this work, a new kind of organic nanoparticles (tripolyphosphate (TPP)-NN NPs) from porphyrin and radical initiator is developed. Under near-infrared light irradiation, TPP-NN NPs will split and release alkyl radical, which could induce obvious cytotoxicity both in normal and hypoxia environment. The photothermal-controlled generation of alkyl radical could significantly inhibit the growth of cervical cancer and show ignorable systemic toxicity. This activatable radical therapy opens up new possibilities for the application of PDT in hypoxia condition.

Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power
Shan Sun - ,
Jingqin Chen - ,
Kai Jiang - ,
Zhongdi Tang - ,
Yuhui Wang - ,
Zhongjun Li - ,
Chengbo Liu *- ,
Aiguo Wu - , and
Hengwei Lin *
Photomediated cancer therapy, mainly including photothermal (PT) therapy (PTT) and photodynamic therapy (PDT), has attracted tremendous attention in recent years thanks to its noninvasive and stimuli-responsive features. The single mode of PTT or PDT, however, has obvious drawbacks, either requiring high-power laser irradiation to generate enough heat or only providing limited efficacy due to the hypoxia nature inside tumors. In addition, the reported synergistic PTT/PDT generally utilized two excitation sources to separately activate PTT and PDT, and the problem of high-power laser irradiation for PTT was still not well solved. Herein, a new concept, loading a small amount of photosensitizers onto a PTT agent (both of them can be triggered by a single-near-infrared (NIR) laser), was proposed to evade the shortcomings of PTT and PDT. To validate this idea, minute quantities of photosensitizer chlorin e6 (Ce6) (0.56% of mass) were anchored onto amino-rich red emissive carbon dots (RCDs) that possess superior photothermal (PT) character under 671 nm NIR laser (PT conversion efficiency to be 46%), and meanwhile the PDT of Ce6 can be activated by this laser irradiation as well. The findings demonstrate that Ce6-modified RCDs (named Ce6-RCDs) offer much higher cancer therapy efficacy under a reduced laser power density (i.e., 0.50 W cm–2 at 671 nm) in vitro and in vivo than the equivalent RCDs or Ce6 under the same irradiation conditions. Besides, the Ce6-RCDs also exhibit multimodal imaging capabilities (i.e., fluorescence (FL), photoacoustic (PA), and PT), which can be employed for guidance of the phototherapy process. This study suggests not only a strategy to enhance cancer phototherapy efficacy but also a promising candidate (i.e., Ce6-RCDs) for multimodal FL/PA/PT imaging-guided and single-NIR-laser-triggered synergistic PTT/PDT for cancers by a reduced irradiation power.

Biomimetic Sensing System for Tracing Pb2+ Distribution in Living Cells Based on the Metal–Peptide Supramolecular Assembly
Shilang Gui - ,
Yanyan Huang *- ,
Yuanyuan Zhu - ,
Yulong Jin - , and
Rui Zhao
Metal–peptide interactions provide plentiful resource and design principles for developing functional biomaterials and smart sensors. Pb2+, as a borderline metal ion, has versatile coordination modes. The interference from competing metal ions and endogenous chelating species greatly challenges Pb2+ analysis, especially in complicated living biosystems. Herein, a biomimetic peptide-based fluorescent sensor GSSH-2TPE was developed, starting from the structure of a naturally occurring peptide glutathione. Lewis acid–base theory was employed to guide the molecular design and tune the affinity and selectivity of the targeting performance. The integration of peptide recognition and aggregation-induced emission effect provides desirable sensing features, including specific turn-on response to Pb2+ over 18 different metal ions, rapid binding, and signal output, as well as high sensitivity with a detection limit of 1.5 nM. Mechanism investigation demonstrated the balance between the chelating groups, and the molecular configuration of the sensor contributes to the high selectivity toward Pb2+ complexation. The ion-induced supramolecular assembly lights up the bright fluorescence. The ability to image Pb2+ in living cells was exhibited with minimal interference from endogenous biothiols, no background fluorescence, and good biocompatibility. With good cell permeability, GSSH-2TPE can monitor changes in Pb2+ levels and biodistribution and thus predict possible damage pathways. Such metal–peptide interaction-based sensing systems offer tailorable platforms for designing bioanalytical tools and show great potential for studying the cell biology of metal ions in living biosystems.

Cu-Releasing Bioactive Glass Coatings and Their in Vitro Properties
Julietta V. Rau *- ,
Mariangela Curcio - ,
Maria Grazia Raucci - ,
Katia Barbaro - ,
Ines Fasolino - ,
Roberto Teghil - ,
Luigi Ambrosio - ,
Angela De Bonis - , and
Aldo R. Boccaccini
Bioactive glasses are well-known materials suitable for bone-related applications thanks to their biocompatibility and osteoconductivity. In order to improve their in vivo performance, the modification of the glass composition by adding ions with specific biological functions is required. As copper (Cu) possesses antibacterial properties, in this study, 5 wt % of CuO has been added to the 45S5 bioactive glass composition. The investigation of the effect of the Cu-containing bioactive glass on cellular behavior has revealed that the presence of Cu induces an early differentiation of human mesenchymal stem cells through osteoblast phenotype, promotes the expression of anti-inflammatory interleukin, and reduces proinflammatory interleukin expression. With the aim to produce coatings with antibacterial properties, the Cu-containing bioactive glass was used as the target material for the pulsed laser deposition (PLD) of bioactive thin films. PLD experiments were carried out at different substrate temperatures to study the effect on the film’s characteristics. All of the films are compact, crack-free, and characterized by a rough morphology and good wettability. The in vitro bioactivity was demonstrated by the apatite growth on the coating surface, after soaking in simulated body fluid, revealed by Raman spectroscopy and scanning electron microscopy—energy dispersive X-ray analyses. The antibacterial study proved that the material showed more effective activity against three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica) rather than against Gram-positive bacteria (Staphylococcus aureus).

Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro
Han Wen - ,
Wenwu Xiao - ,
Sangita Biswas - ,
Zhao-Qing Cong - ,
Xin-Min Liu - ,
Kit S. Lam - ,
Yong-Hong Liao *- , and
Wenbin Deng *
In this study, we established a long-term three-dimensional (3D) culture system by using integrin ligand modified alginate hydrogels to encapsulate and differentiate neural progenitor cells (NPCs) toward oligodendrocyte (OL) lineage cells. The porosity of the hydrogel was optimized by varying the alginate concentrations and then characterized by scanning electronic microscopy (SEM). The surface plasmon resonance (SPR) test was used to confirm the ligand-integrin interactions indicating adherence between the NPC surfaces and the hydrogels. Following encapsulation in the hydrogels, both mouse and human NPC sphere cultures could be maintained up to 90 days. Mouse NPC spheres were differentiated into viable neurons, astrocytes and mature OLs by day 60 in all groups whereas human NPC spheres were differentiated into neurons and later into GFAP positive astrocytes and O4 positive pre-OL within 90 days. The species difference in the timeline of OL development between mouse and human was reflected in this system. The ligand LXY30 interacting with the α3β1 integrin receptor was more effective in promoting the differentiation of hNPCs to OL lineage cells compared with the ligand LXW64 interacting with the αvβ3 integrin receptor, hyaluronic acid interacting with CD44 receptor or without any ligand. This study is the first to differentiate O4+ pre-OLs from hNPCs in a LXY30-α3β1 (integrin-ligand) modified alginate 3D hydrogel culture. This 3D platform could serve as a valuable tool in disease modeling, drug discovery, and NPC transplantation.

Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration
Nowsheen Goonoo *- ,
Amir Fahmi - ,
Ulrich Jonas - ,
Fanny Gimié - ,
Imade Ait Arsa - ,
Sébastien Bénard - ,
Holger Schönherr *- , and
Archana Bhaw-Luximon *
The potential of electrospun polydioxanone (PDX) mats as scaffolds for skeletal tissue regeneration was significantly enhanced through improvement of the cell-mediated biomimetic mineralization and multicellular response. This was achieved by blending PDX (i) with poly(hydroxybutyrate-co-valerate) (PHBV) in the presence of hydroxyapatite (HA) and (ii) with aloe vera (AV) extract containing a mixture of acemannan/glucomannan. In an exhaustive study, the behavior of the most relevant cell lines involved in the skeletal tissue healing cascade, i.e. fibroblasts, macrophages, endothelial cells and preosteoblasts, on the scaffolds was investigated. The scaffolds were shown to be nontoxic, to exhibit insignificant inflammatory responses in macrophages, and to be degradable by macrophage-secreted enzymes. As a result of different phase separation in PDX/PHBV/HA and PDX/AV blend mats, cells interacted differentially. Presumably due to varying tension states of cell–matrix interactions, thinner microtubules and significantly more cell adhesion sites and filopodia were formed on PDX/AV compared to PDX/PHBV/HA. While PDX/PHBV/HA supported micrometer-sized spherical particles, nanosized rod-like HA was observed to nucleate and grow on PDX/AV fibers, allowing the mineralized PDX/AV scaffold to retain its porosity over a longer time for cellular infiltration. Finally, PDX/AV exhibited better in vivo biocompatibility compared to PDX/PHBV/HA, as indicated by the reduced fibrous capsule thickness and enhanced blood vessel formation. Overall, PDX/AV blend mats showed a significantly enhanced potential for skeletal tissue regeneration compared to the already promising PDX/PHBV/HA blends.

A CD44-Targeting Programmable Drug Delivery System for Enhancing and Sensitizing Chemotherapy to Drug-Resistant Cancer
Min Zhang - ,
Yi Ma - ,
Zhaohui Wang - ,
Zhihao Han - ,
Weidong Gao - ,
Qiumei Zhou - , and
Yueqing Gu *
Programmable drug delivery systems hold great promise to enhance cancer treatment. Herein, a programmable drug delivery system using a chondroitin sulfate (CS)-based composite nanoparticle was developed for enhancing and sensitizing chemotherapy to drug-resistant cancer. The nanoparticle was composed of a cross-linked CS hydrogel shell and hydrophobic cores containing both free drugs and CS-linked prodrugs. Interestingly, the nanoparticle could mediate tumor-specific CD44 targeting. After specific cellular uptake, the payloads were suddenly released because of the decomposition of the CS shell, and the free drug molecules with synergistic effects induced tumor-specific cytotoxicity rapidly. Subsequently, the inner cores of the nanoparticles sustainedly release their cargos in drug-resistant tumor cells to keep the effective drug concentration against the drug efflux mediated by P-glycoprotein. CS dissociated from the outer shell and sensitized cancer cells to the antitumor drugs through downregulation of Bcl-XL, an antiapoptosis protein. Such a programmable drug delivery system with specific tumor-targeting and sensitized therapy is promising for rational drug delivery and provides more versatility for controlled release in biomedical applications.

Tyrosinase-Loaded Multicompartment Microreactor toward Melanoma Depletion
Maria Godoy-Gallardo - ,
Cédric Labay - , and
Leticia Hosta-Rigau *
Melanoma is malignant skin cancer occurring with increasing prevalence with no effective treatment. A unique feature of melanoma cells is that they require higher concentrations of ltyrosine (l-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary l-tyr restriction lowers systemic l-tyr and suppresses melanoma advancement in mice. Unfortunately, this diet is not well tolerated by humans. An alternative approach to impede melanoma progression will be to administer the enzyme tyrosinase (TYR), which converts l-tyr into melanin. Herein, a multicompartment carrier consisting of a polymer shell entrapping thousands of liposomes is employed to act as a microreactor depleting l-tyr in the presence of melanoma cells. It is shown that the TYR enzyme can be incorporated within the liposomal subunits with preserved catalytic activity. Aiming to mimic the dynamic environment at the tumor site, l-tyr conversion is conducted by co-culturing melanoma cells and microreactors in a microfluidic setup with applied intratumor shear stress. It is demonstrated that the microreactors are concurrently depleting l-tyr, which translates into inhibited melanoma cell growth. Thus, the first microreactor where the depletion of a substrate translates into antitumor properties in vitro is reported.

Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures
Dongkwon Seo - ,
Suk-kyong Cha - ,
Gijung Kim - ,
Hyunku Shin - ,
Soonwoo Hong - ,
Yang Hyun Cho - ,
Honggu Chun *- , and
Yeonho Choi *
In artificial biological circulation systems such as extracorporeal membrane oxygenation, surface wettability is a critical factor in blood clotting problems. Therefore, to prevent blood from clotting, omniphobic surfaces are required to repel both hydrophilic and oleophilic liquids and reduce surface friction. However, most omniphobic surfaces have been fabricated by combining chemical reagent coating and physical structures and/or using rigid materials such as silicon and metal. It is almost impossible for chemicals to be used in the omniphobic surface for biomedical devices due to durability and toxicity. Moreover, a flexible and stable omniphobic surface is difficult to be fabricated by using conventional rigid materials. This study demonstrates a flexible and stable omniphobic surface by mimicking the re-entrant structure of springtail’s skin. Our surface consists of a thin nanohole membrane on supporting microstructures. This structure traps air under the membrane, which can repel the liquid on the surface like a spring and increase the contact angle regardless of liquid type. By theoretical wetting model and simulation, we confirm that the omniphobic property is derived from air trapped in the structure. Also, our surface well maintains the omniphobicity under a highly pressurized condition. As a proof of our concept and one of the real-life applications, blood experiments are performed with our flat and curved surfaces and the results including contact angle, advancing/receding angles, and residuals show significant omniphobicity. We hope that our omniphobic surface has a significant impact on blood-contacting biomedical applications.

Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels
Changyou Shao - ,
Lei Meng - ,
Meng Wang - ,
Chen Cui - ,
Bo Wang - ,
Chun-Rui Han - ,
Feng Xu - , and
Jun Yang *
Although self-healing gels with structural resemblance to biological tissues attract great attention in biomedical fields, it remains a dilemma for combination between fast self-healing properties and high mechanical toughness. On the basis of the design of dynamic reversible cross-links, we incorporate rigid tannic acid-coated cellulose nanocrystal (TA@CNC) motifs into the poly(vinyl alcohol) (PVA)–borax dynamic networks for the fabrication of a high toughness and rapidly self-healing nanocomposite (NC) hydrogel, together with dynamically adhesive and strain-stiffening properties that are particularly indispensable for practical applications in soft tissue substitutes. The results demonstrate that the obtained NC gels present a highly interconnected network, where flexible PVA chains wrap onto the rigid TA@CNC motifs and form the dynamic TA@CNC–PVA clusters associated by hydrogen bonds, affording the critical mechanical toughness. The synergetic interactions between borate–diol bonds and hydrogen bonds impart a typical self-healing behavior into the NC gels, allowing the dynamic cross-linked networks to undergo fast rearrangement in the time scale of seconds. Moreover, the obtained NC hydrogels not only mimic the main feature of biological tissues with the unique strain-stiffening behavior but also display unique dynamic adhesiveness to nonporous and porous substrates. It is expected that this versatile approach opens up a new prospect for the rational design of multifunctional cellulosic hydrogels with remarkable performance to expand their applications.

Black Phosphorus-Based Drug Nanocarrier for Targeted and Synergetic Chemophotothermal Therapy of Acute Lymphoblastic Leukemia
Shenfei Zong - ,
Lingling Wang - ,
Zhaoyan Yang - ,
Hong Wang - ,
Zhuyuan Wang *- , and
Yiping Cui *
As one of the novel two-dimensional nanomaterials, black phosphorus nanosheets (BP NS) have been proven to be excellent carrier materials for drugs, owing to their fine optical properties and biocompatibility. In this work, a composite drug nanocarrier based on BP NS is proposed, which can perform a synergetic and targeted chemophotothermal therapy of acute lymphoblastic leukemia (ALL). First, BP NS were prepared by an improved liquid exfoliation technique. Then, polyethylene glycol (PEG) was modified on the surfaces of BP NS through electrostatic adsorption. Drug molecules can also be loaded onto the BP NS via electrostatic adsorption. The PEG layer can effectively protect the interior BP NS from water and air to enhance their physiological stability. The obtained PEGylated BP NS (BP NS@PEG) not only demonstrated an excellent photothermal conversion efficiency and photothermal stability but also exhibited a good pH and photothermal dual-responsive drug release behavior. In addition, the BP NS@PEG were further modified with Sgc8 aptamers through covalent bonding. The aptamers provided an efficient specificity toward ALL cells (CCRF-CEM) and greatly increased the endocytosis of the nanocarriers through a receptor-mediated manner, which can further improve the therapeutic effect. Hence, the presented BP NS-based multifunctional nanocarrier can achieve a targeted and synergetic chemophotothermal therapy of ALL, which shows a promising potential in improving the curative efficiency.
Energy, Environmental, and Catalysis Applications

3D Yolk@Shell TiO2–x/LDH Architecture: Tailored Structure for Visible Light CO2 Conversion
Abolfazl Ziarati - ,
Alireza Badiei *- ,
Rossella Grillo - , and
Thomas Burgi *
CO2 photoconversion into hydrocarbon solar fuels by engineered semiconductors is considered as a feasible plan to address global energy requirements in times of global warming. In this regard, three-dimensional yolk@shell hydrogenated TiO2/Co–Al layered double hydroxide (3D Y@S TiO2–x/LDH) architecture was successfully assembled by sequential solvothermal, hydrogen treatment, and hydrothermal preparation steps. This architecture revealed a high efficiency for the photoreduction of CO2 to solar fuels, without a noble metal cocatalyst. The time-dependent experiment indicated that the production of CH3OH was almost selective until 2 h (up to 251 μmol/gcat. h), whereas CH4 was produced gradually by increasing the time of reaction to 12 h (up to 63 μmol/gcat. h). This significant efficiency can be ascribed to the engineering of 3D Y@S TiO2–x/LDH architecture with considerable CO2 sorption ability in mesoporous yolk@shell structure and LDH interlayer spaces. Also, oxygen vacancies in TiO2–x could provide excess sites for sorption, activation, and conversion of CO2. Furthermore, the generated Ti3+ ions in the Y@S TiO2 structure as well as connecting of structure with LDH plates can facilitate the charge separation and decrease the band gap of nanoarchitecture to the visible region.

Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks for a Lithium–Sulfur Battery
Shuo Feng - ,
Junhua Song - ,
Chengzhou Zhu *- ,
Qiurong Shi - ,
Dong Liu - ,
Jincheng Li - ,
Dan Du - ,
Qiang Zhang - , and
Yuehe Lin *
The conversion reaction-based lithium–sulfur battery features an attractive energy density of 2600 W h/kg. Nevertheless, the unsatisfied performance in terms of poor discharge capacity and cycling stability still hinders its practical applications. Recently, porous carbon materials have been widely reported as promising sulfur reservoirs to promote the sluggish reaction kinetics of sulfur conversion, tolerate volume expansion of sulfur, and suppress polysulfide shuttling. However, porous carbon with a simply designed nanostructure is hard to satisfy all of these aspects simultaneously. Herein, we have applied a dual-template strategy that assembles carbon pores into carbon sheets to prepare three-dimensional (3D) nitrogen-doped porous carbon nanosheets (N-PCSs) as the multifunctional sulfur host for the Li–S battery. By arranging carbon pores within an interconnected 3D architecture, the porous carbon sheets enable rapid electron/ion transfer. Moreover, the micro/mesopores and nitrogen dopant in N-PCS provide both physical and chemical restrictions to polysulfide species. With these advances, the N-PCS/S cathode delivers a large initial discharge capacity of 1360 mA h/g at 0.1 C. When performed at 0.5 C for 1000 cycles, the cathode can still remain ∼50% of its capacity with a low decay rate of 0.05% per cycle, showing the important role of the 3D carbon material in the Li–S battery.

Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor
Qi Zhang - ,
Chaoji Chen - ,
Wenshuai Chen - ,
Glenn Pastel - ,
Xiaoyu Guo - ,
Shouxin Liu - ,
Qingwen Wang - ,
Yixing Liu - ,
Jian Li - ,
Haipeng Yu *- , and
Liangbing Hu *
Nanocellulose has been used as a sustainable nanomaterial for constructing advanced electrochemical energy-storage systems with renewability, lightweight, flexibility, high performance, and satisfying safety. Here, we demonstrate a high-performance all-nanofiber asymmetric supercapacitor (ASC) assembled using a forest-based, nanocellulose-derived hierarchical porous carbon (nanocellulose carbon, HPC) anode, a mesoporous nanocellulose membrane separator (nanocellulose separator), and a NiCo2O4 cathode with nanocellulose carbon as the support matrix (nanocellulose cathode, HPC/NiCo2O4). HPC has a three-dimensional porous structure comprising interconnected nanofibers with an ultrahigh surface area of 2046 m2 g–1. When integrated with the mesoporous feature of the nanocellulose membrane separator, these properties facilitate the quick delivery of both ions and electrons even with a thick (up to several hundreds of micrometers) and highly loaded (5.8 mg cm–2) ASC design. Consequently, the all-nanofiber ASC demonstrates a high electrochemical performance (64.83 F g–1 (10.84 F cm–3) at 0.25 A g–1 and 32.78 F g–1 or 5.48 F cm–3 at 4 A g–1) that surpasses most cellulose-based ASCs ever reported. Moreover, the nanocellulose components promise renewability, low cost, and biodegradability, thereby presenting a promising direction toward high-power, environmentally friendly, and renewable energy-storage devices.

Microstructure Manipulation for Enhancing the Resistance of Garnet-Type Solid Electrolytes to “Short Circuit” by Li Metal Anodes
Yaoyu Ren *- ,
Yang Shen - ,
Yuanhua Lin - , and
Ce-Wen Nan *
Al-contained Li7–xLa3Zr2–xTaxO12 (xTa-LLZO) powder was synthesized via solid-state reaction, where increasing the Ta doping level was found to reduce the average particle size and facilitate a higher relative density in the sintered pellet. 0.8Ta-LLZO pellets sintered at 1150 °C achieved a relative density of 96.2 ± 0.2% and survived the Li striping/plating test under a unidirectional current polarization of 0.5 mA/cm2 for more than 8 h without short-circuiting. In contrast, other xTa-LLZO sintered pellets with lower Ta doping levels were short-circuited by lithium dendrites after polarization for much shorter time periods. The microstructure of the sintered body played a more essential role in lithium dendrite prevention compared to relative density alone. By characterizing the microstructure of xTa-LLZO sintered pellets, we proposed a formation mechanism of the pathways for lithium dendrite growth.

Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density
Jie Yang - ,
Zhenghui Pan - ,
Qiang Yu - ,
Qichong Zhang - ,
Xiaoyu Ding - ,
Xinyao Shi - ,
Yongcai Qiu - ,
Kai Zhang *- ,
John Wang - , and
Yuegang Zhang *
Micro-supercapacitors (micro-SCs) are significant micro-scale power sources and energy storage components for miniaturized electronic and flexible devices, where electrodes play a key role in determining their electrochemical performances. The efficient intercalation of ions between the stacking layers of two-dimensional layered materials (2DLM) makes them great candidates as thin-film electrodes in micro-SCs, where one can achieve much enhanced volumetric capacitance. However, a great challenge is to develop a high-yield production method for high-quality 2DLM thin-film electrodes. In this work, we have successfully reported a scalable fabrication process for free-standing black phosphorous (BP) thin films, derived from high-quality few-layer BP nanoflakes via a modified electrochemical exfoliation route, for flexible quasi-solid-state micro-SCs (QMSCs). The as-fabricated QMSCs exhibit an excellent stable electrochemical performance at a high scan rate of up to 100 V s–1. More importantly, our QMSC device can not only achieve an outstanding energy density of 3.63 mW h cm–3, a remarkable power density of 10.1 W cm–3, and a superior cycle span (94.3% capacity retention even after 50 000 cycles), but also deliver excellent mechanical flexibility demonstrated by 91.3% capacity retention after 500 mechanical bending cycles. More interestingly, to meet the energy density and power density needs for various practical applications, multiple QMSCs can be successfully integrated in parallel or in series, which is demonstrated by lighting up of the red-light-emitting diode. The BP-based QMSCs can be patterned on a single substrate with flexible photodetectors based on same BP thin film to form a self-powered optoelectronic system.

Integrating Water-Soluble Polythiophene with Transition-Metal Dichalcogenides for Managing Photoinduced Processes
Ruben Canton-Vitoria - ,
Emin Istif - ,
Javier Hernández-Ferrer - ,
Esteban Urriolabeitía - ,
Ana M. Benito *- ,
Wolfgang K. Maser *- , and
Nikos Tagmatarchis *
Transition-metal dichalcogenides (TMDs) attract increased attention for the development of donor–acceptor materials enabling improved light harvesting and optoelectronic applications. The development of novel donor–acceptor nanoensembles consisting of poly(3-thiophene sodium acetate) and ammonium functionalized MoS2 and WS2 was accomplished, while photoelectrochemical cells were fabricated and examined. Attractive interactions between the negatively charged carboxylate anion on the polythiophene backbone and the positively charged ammonium moieties on the TMDs enabled in a controlled way and in aqueous dispersions the electrostatic association of two species, evidenced upon titration experiments. A progressive quenching of the characteristic fluorescence emission of the polythiophene derivative at 555 nm revealed photoinduced intraensemble energy and/or electron transfer from the polymer to the conduction band of the two TMDs. Photoelectrochemical assays further confirmed the establishment of photoinduced charge-transfer processes in thin films, with distinct responses for the MoS2- and WS2-based systems. The MoS2-based ensemble exhibited enhanced photoanodic currents offering additional channels for hole transfer to the solution, whereas the WS2-based one displayed increased photocathodic currents providing supplementary pathways of electron transfer to the solution. Moreover, scan direction depending on photoanodic and photocathodic currents suggested the existence of yet unexploited photoinduced memory effects. These findings highlight the value of electrostatic interactions for the creation of novel donor–acceptor TMD-based ensembles and their relevance for managing the performance of photoelectrochemical and optoelectronic processes.

New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source for Sodium-Deficient Cathode Materials for Full Cells
Jae Hyeon Jo - ,
Ji Ung Choi - ,
Yun Ji Park - ,
Jiefang Zhu - ,
Hitoshi Yashiro - , and
Seung-Taek Myung *
Sacrificing sodium supply sources is needed for sodium-deficient cathode materials to achieve commercialization of sodium-ion full cells using sodium-ion intercalation anode materials. Herein, the potential of ethylenediaminetetraacetic acid tetrasodium salt (EDTA-4Na) as a sacrificing sodium supply source was investigated by intimately blending it with sodium-deficient P2-type Na0.67[Al0.05Mn0.95]O2. The EDTA-4Na/Na0.67[Al0.05Mn0.95]O2 composite electrode unexpectedly exhibited an improved charge capacity of 177 mA h (g-oxide)−1 compared with the low charge capacity of 83 mA h (g-oxide)−1 for bare Na0.67[Al0.05Mn0.95]O2. The reversible capacity of an EDTA-4Na/Na0.67[Al0.05Mn0.95]O2//hard carbon full-cell system increased to 152 mA h (g-oxide)−1 at the first discharge with a Coulombic efficiency of 89%, whereas the Na0.67[Al0.05Mn0.95]O2 without EDTA-4Na delivered a discharge capacity 51 mA h g–1 because of the small charge capacity. The EDTA-4Na sacrificed itself to generate Na+ ions via oxidative decomposition by releasing four sodium ions and producing C3N as a decomposition resultant on charge. It is thought that the slight increase in discharge capacity is associated with the electroconducting nature of the C3N deposits formed on the surface of the Na0.67[Al0.05Mn0.95]O2 electrode. We elucidated the reaction mechanism and sacrificial activity of EDTA-4Na, and our findings suggest that the addition of EDTA-4Na is beneficial as an additional source of Na+ ions that contribute to the charge capacity.

Stacking of Tailored Chalcogenide Nanosheets around MoO2-C Conductive Stakes Modulated by a Hybrid POM⊂MOF Precursor Template: Composite Conversion–Insertion Cathodes for Rechargeable Mg–Li Dual-Salt Batteries
Chenglong Wu - ,
Jiulin Hu - ,
Jing Tian - ,
Fulu Chu - ,
Zhenguo Yao - ,
Yongjian Zheng - ,
Dongguang Yin *- , and
Chilin Li *
Mg anode has pronounced advantages in terms of high volumetric capacity, resource abundance, and dendrite-free electrochemical plating, which make rechargeable Mg-based batteries stand out as a representative next-generation energy storage system utilized in the field of large-scale stationary electric grid. However, sluggish Mg2+ diffusion in cathode lattices and facile passivation on the Mg anode hinder the commercialization of Mg batteries. Exploring a highly electroactive cathode prototype with hierarchical nanostructure and compatible electrolyte system with the capability of activating both an anode and a cathode is still a challenge. Here, we propose a POM⊂MOF (NENU-5) core–shell architecture as a hybrid precursor template to achieve the stacking of tailored chalcogenide nanosheets around MoO2-C conductive stakes, which can be employed as conversion–insertion cathodes (Cu1.96S-MoS2-MoO2 and Cu2Se-MoO2) for Mg–Li dual-salt batteries. Li-salt modulation further activates the capacity and rate performance at the cathode side by preferential Li-driven displacement reaction in Cu+ extrusible lattices. The heterogeneous conductive network and conformal dual-doped carbon coating enable a reversible capacity as high as 200 mAh/g with a coulombic efficiency close to 100%. The composite cathode can endure a long-term cycling up to 400 cycles and a high current density up to 2 A/g. The diversity of MOF-based materials infused by functional molecules or clusters would enrich the nanoengineering of electrodes to meet the performance demand for future multivalent batteries.

Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al2O3 Intermediate Layer for Water Splitting
Zhongyuan Zhou - ,
Shaolong Wu *- ,
Liujing Li - ,
Liang Li - , and
Xiaofeng Li *
Dual-absorber photoelectrodes have been proved to possess greater potential than the single-absorber systems in the applications of photoelectrochemical (PEC) cells (e.g., solar-driven water splitting); however, the mismatching of the energy bands and substantial carrier recombinations at the two absorber interfaces are normally subsistent. Here, we introduce an intermediate layer of conformal Al2O3 into the silicon/hematite (Si/α-Fe2O3) microwire photoanode for enriching the understanding of the interaction among the interlayer, inner absorber, and outer absorber. Our results show that the Si/Al2O3/α-Fe2O3 microwire photoanode with the thickness-optimized Al2O3 can lead to a substantial increase in the photocurrent from 0.83 to 2.08 mA/cm2 at 1.23 VRHE (under 1 sun irradiation) and an obvious decrease in the onset potential relative to the counterpart without Al2O3. By analyzing the PEC responses under various monochromatic lights, PEC impedance spectroscopy, and intensity-modulated photocurrent spectroscopy, we ascribe the improvements to the fact that the suitable-thickness Al2O3 can passivate the Si microwire surfaces and the bottom surfaces of the α-Fe2O3 film and give rise to Al doping into the post-synthesized α-Fe2O3. These essential causes promote the carrier separation in α-Fe2O3, diminish the photoanode surface recombination rate, and then increase the surface charge-transfer efficiency.

Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System
Sareh Vafakhah - ,
Lu Guo - ,
Deepa Sriramulu - ,
Shaozhuan Huang - ,
Mohsen Saeedikhani - , and
Hui Ying Yang *
In this study, we introduced an efficient hybrid capacitive deionization (HCDI) system for removal of NaCl from brackish water, in which Prussian blue nanocubes embedded in a highly conductive reduced graphene oxide aerogel have been used as a binderfree intercalation anode to remove Na+ ions. The combination of redox-active nanocubes and the three-dimensional porous graphene network yielded a high salt removal capacity of 130 mg g–1 at the current density of 100 mA g–1. Moreover, energy recovery and energy consumption upon different desorption voltages of the HCDI system were investigated and the result showed a notably low energy consumption of 0.23 Wh g–1 and a high energy recovery of 39%. Furthermore, the real-time intercalation process was verified by in situ X-ray powder diffraction measurements, which confirmed the intercalation and deintercalation processes during charging and discharging, respectively. Eventually, a perfect stability of the desalination unit was confirmed through the steady performance of 100 cycles. The improved efficiency as well as ease of fabrication opens a shiny horizon for our HCDI system toward commercialization of such technology for brackish water desalination.

A Facile Approach To Improve Electrochemical Capacitance of Carbons by in Situ Electrochemical Oxidation
Yuan Wang - ,
Zheng Chang - ,
Zhichao Zhang - ,
Jie Lin - ,
Meng Qian - ,
Peng Wang - ,
Tianquan Lin *- , and
Fuqiang Huang *
A facile approach of in situ electrochemical oxidation has been utilized to modify carbons, including activated carbon, mesoporous few-layer carbon, graphite, carbon fiber, and carbon nanotube, which induces oxygen-containing functional groups on its surface and simultaneously enhances its wettability, contributing to the improvement of capacitance. By this approach, the capacitance of commercialized activated carbon is increased by 86% in an acidic electrolyte, reaching 320 F g–1, of which more than 96% was maintained after 10 000 cyclic tests. The huge improvement stems from electrochemical redox reactions enabled by oxygen-associated groups, which do not adversely affect the porous structure and electrical conductivity. Such improvement will put carbon-based electrochemical capacitors into more practical application areas.

One-Step, Catalyst-Free, Scalable in Situ Synthesis of Single-Crystal Aluminum Nanowires in Confined Graphene Space
Yanan Chen - ,
Yanbin Wang - ,
Shuze Zhu - ,
Chaoji Chen - ,
Valencia A. Danner - ,
Yiju Li - ,
Jiaqi Dai - ,
Hongbian Li - ,
Kun Kevin Fu - ,
Teng Li - ,
Yang Liu - , and
Liangbing Hu *
Nanowires have a wide range of applications, such as transparent electrodes, Li-ion battery anodes, light-emitting diodes, solar cells, and electronic devices. Currently, aluminum (Al) nanowires can be synthesized by thermally induced substitution of germanium (Ge) nanowires, chemical vapor deposition on other metal substrates, and template-assisted growth methods. However, there are still challenges in fabricating extremely high-purity nanowires, large-scale manufacturing, and simplifying the synthesis process and conditions. Here, we report for the first time that single-crystal Al nanowires can be one-step, in situ synthesized on a reduced graphene oxide (RGO) substrate on a large scale without using any catalysts. Through a simple high temperature treatment process, commercial micro-sized Al powders in RGO film were transformed into a single-crystal Al nanowire with an average length of 1.2 μm and an average diameter of 18 nm. The possible formation mechanism of the single-crystal Al nanowires is proposed as follows: hot aluminum atoms eject from the pristine aluminum/alumina core/shell structure of Al powders when they build up enough energy from the thermal stress under high temperature and confined space conditions, which is supported by both experimental and computational results. The method introduced here can be extended to allow the synthesis of one-dimensional highly reactive materials, like alkali metal nanowires, in confined spaces.

Rapid and Economic Synthesis of a Li7PS6 Solid Electrolyte from a Liquid Approach
Dominika A. Ziolkowska - ,
William Arnold - ,
Thad Druffel - ,
Mahendra Sunkara - , and
Hui Wang *
Solid electrolytes are the key to realize future solid-state batteries that show the advantages of high energy density and intrinsic safety. However, most solid electrolytes require long time and energy-consuming synthesis conditions of either extended ball milling or high-temperature solid-state reactions, impeding practical applications of solid electrolytes for large-scale systems. Here, we report a new and rapid liquid-based synthetic method for preparing a high-purity Li7PS6 solid electrolyte through the stoichemical reaction of Li3PS4 and Li2S. This method relies on facile and low-cost solution-based soft chemistry to complete chemical reaction in extensively short time (2 h). The prepared Li7PS6 solid electrolyte shows a high phase purity, an impressive ionic conductivity (0.11 mS cm–1), and a reasonable electrochemical stability with a metallic lithium anode. Our results highlight the use of an economic and nontoxic solvent to quickly synthesize a Li7PS6 solid electrolyte, which would promote the development of solid-state batteries for next-generation energy storage systems.

Influence of Cl Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells
Hui Zhang *- ,
Yifan Lv - ,
Jinpei Wang - ,
Huili Ma - ,
Zhengyi Sun - , and
Wei Huang
Solar cells based on organic–inorganic hybrid lead-halide perovskites are very promising because of their high performance and solution process feasibility. Elemental engineering on perovskite composition is a facile path to obtain high-quality crystals for efficient and stable solar cells. It was found that partially substituting I– with Cl– in the perovskite precursor promoted crystal growth, with the grain size larger than the layer thickness, and facilitated the generation of a self-passivation layer of PbI2. Whereas the residual Cl– ions were suspected to diffuse to the hole-transport layer consisting of ubiquitously spiro-OMeTAD, the formation of highly bounded ionic pairing of Cl– with the oxidized state of spiro-OMeTAD led to insufficient charge extraction and severely reversible performance degradation. This issue was effectively alleviated upon Br– doping owing to the generation of Pb–Br bonds in the lattice that strengthened the phase stability by improving the binding energy between each unit. The binary halide (Br–/Cl–)-doped perovskites resulted in a champion power conversion efficiency of 20.2% with improved long-term storage stability.

Ordered Porous Poly(ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO2 Capture and Fixation
Jingjiao Cao - ,
Wanjian Shan - ,
Qian Wang - ,
Xingchen Ling - ,
Guoqing Li - ,
Yinong Lyu - ,
Yu Zhou *- , and
Jun Wang *
Porous poly(ionic liquid)s (PPILs) combine the features of porous materials, polymers, and ionic liquids (ILs) or their derivatives, but they are normally of amorphous structure with disordered pores. Here, we report the facile synthesis of ordered porous poly(ionic liquid) crystallines (OPICs, specialized as a kind of PPIL analogues) with diverse and adjustable framework IL moieties through the Schiff base condensation of IL-derived ionic salts and neutral monomers. Ternary monomer mixtures are employed to artistically control the chemical composition and pore configurations. Compact atomic packing was achieved to give spacing confined ionic surface with strong CO2 affinity. Through monomer control, OPICs exhibit high CO2 uptakes with excellent CO2/N2(CH4) selectivities and efficiently implement CO2 fixation through catalyzing epoxides cycloaddition under down to ambient conditions.

Co3O4–CuCoO2 Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O2 Activation in H2 Purification
Junfang Ding - ,
Liping Li - ,
Haorui Zheng - ,
Ying Zuo - ,
Xiyang Wang - ,
Huixia Li - ,
Shaoqing Chen - ,
Dan Zhang - ,
Xingliang Xu - , and
Guangshe Li *
Nanomaterials are widely used as redox-type reaction catalysts, while reactant adsorption and O2 activation are hardly to be promoted simultaneously, restricting their applications in many important catalytic fields such as preferential CO oxidation (CO-PROX) in H2-rich stream. In this work, an interface-enhanced Co3O4–CuCoO2 nanomesh was initially synthesized by a hydrothermal process using aluminum powder as a sacrificial agent. This nanomesh is systematically characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, UV–vis absorption spectroscopy, Raman spectroscopy, X-ray absorption near-edge spectroscopy, hydrogen temperature-programmed reduction, and oxygen temperature-programmed desorption. It is demonstrated that the nanomesh possesses high-density nanopores, enabling a large number of CO adsorption sites exposed to the surface. Meanwhile, electron transfer from O2– to Co3+/Co2+ and the weakened bonding strength of Co–O bond at surfaces promoted the oxygen activation and redox ability of Co3O4. When tested as a catalyst for CO-PROX, this nanomesh with an optimized pore structure and a surface electronic structure, exhibits a strikingly high catalytic oxidation activity at low temperatures as well as a broader operation temperature window (i.e., CO conversion >99.0%, 100–200 °C) in the CO selective oxidation reaction. The present finding should be highly useful in promoting the quest for better CO-PROX catalysts, a hot topic for proton exchange membrane fuel cells and automotive vehicles.

Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode
Daniela Leanza - ,
Carlos A. F. Vaz - ,
Georgian Melinte - ,
Xiaoke Mu - ,
Petr Novák - , and
Mario El Kazzi *
The understanding of surface reactions at the electrode–electrolyte interfaces has been a longstanding challenge in Li-ion batteries. X-ray photoemission electron microscopy is used to throw light on the disputed aspects of the surface reactivity of high-energy Li-rich Li1+x(NiaCobMn1–a–b)1–xO2 (HE-NCM) cycled in an aprotic electrolyte against Li4Ti5O12 (LTO). Despite the highly oxidative potential of 5.1 V vs Li+/Li, there is no formation of a layer of oxidized electrolyte byproducts on any of the cathode particles; instead, a homogeneous organic–inorganic layer builds up across the particles of the LTO anode due to the electrolyte and poly(vinylidene fluoride) binder decomposition on HE-NCM. In addition, such a layer incorporates, already from the first charge, micrometer-sized agglomerates of transition metals (TMs). The presence of TMs on the anode is explained by the instability of the reduced Mn, Co, and Ni formed at the surface of HE-NCM mainly during delithiation. The reduced TMs are unstable and prone to be transported to the LTO, where they get further reduced to metallic-like clusters. These results demonstrate that a dual reaction takes place at the HE-NCM–electrolyte interface if subject to high potential, namely, degradation of the surface structure and decomposition of the electrolyte, affecting directly the anode surface through the migration–diffusion processes.

Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications
Natalia Rey-Raap *- ,
Marina Enterría - ,
José Inácio Martins - ,
Manuel Fernando R. Pereira - , and
José Luís Figueiredo
Glucose-derived carbon/carbon nanotube (CNT) hybrid materials were prepared by hydrothermal carbonization of glucose in the presence of CNTs and subsequent carbonization, physical activation, or chemical activation. The proportion of CNTs added during the hydrothermal polymerization of glucose was varied to ascertain the optimum dose to maximize the performance of the carbon hybrids in supercapacitor applications. Both the thermal treatment applied and the addition of CNTs lead to changes in the textural and chemical properties of the activated carbons. It was observed that samples bearing CNTs exhibit higher number of nucleation centers for glucose oligomers to polymerize, and consequently, the behavior of the hydrothermal carbon toward activation differs according to the activating agent employed. Moreover, the initial chemical speciation dominated by acidic groups shifts to more basic functionalities (quinones and carbonyl groups) with the addition of CNTs. The effect of the different physicochemical properties of the prepared carbons on their electrochemical behavior was evaluated. The addition of 2 wt % of CNTs and subsequent chemical activation leads to electrode materials yielding 206 F g–1 and 78% of capacitance retention up to 0.8 V and 20 A g–1 and high rate cyclability (97% after 5000 cycles). The outstanding performance is ascribed to the high surface area, narrow mesopores, and phenol/carbonyl surface functionalities, which enhance molecular diffusion, the amount of stored energy, and electronic transportation, respectively.

Novel Interfacial Bulk Heterojunction Technique for Enhanced Response in ZnO Nanogenerator
Rajagopalan Pandey - ,
Nirmal Prasanth Maria Joseph Raj - ,
Vipul Singh - ,
Palani Iyamperumal Anand *- , and
Sang-Jae Kim *
In this paper, a direct sustainable approach for the development of a n-ZnO:p-CuO heterojunction (ZCH) through a simple grinding is reported to be an effective technique to enhance the piezoelectric performance of ZCH/polydimethylsiloxane (PDMS) nanocomposite-based nanogenerators (ZP-PNGs). We have first optimized the best concentration for ZnO/PDMS nanocomposite for the realization of the piezoelectric nanogenerator. Later, with the same configuration, we implemented a novel, simple, facile, frugal, and inexpensive technique to fabricate ZCH. The heterojunction results in the improved charge transfer characteristics, low capacitance, and charge nullification contributing to the enhanced piezoelectric output. This reflects in the improvement of the peak-to-peak piezoelectric potential of the device from 2.7 to 9 V. The instantaneous max power density was found to be 0.2 mW/m2. The device can work as a force sensor with improved sensitivity of 1.7 V/N compared to 1.05 V/N of the intrinsic device. The device is being systematically studied for load matching and capacitor charging to demonstrate its practicability. Furthermore, we tested our device to harness the biomechanical energy from day-to-day life activities. Finally, the device was used to fabricate sustainable piezoelectric-based smart urinal systems for low-income group countries.

New Anode Material for Lithium-Ion Batteries: Aluminum Niobate (AlNb11O29)
Xiaoming Lou - ,
Renjie Li - ,
Xiangzhen Zhu - ,
Lijie Luo - ,
Yongjun Chen - ,
Chunfu Lin *- ,
Hongliang Li - , and
X. S. Zhao *
This paper describes the syntheses and electrochemical properties of a new niobate compound, aluminum niobate (AlNb11O29), for Li+ storage. AlNb11O29-microsized particles and nanowires were synthesized based on the solid-state reaction and solvothermal methods, respectively. In situ X-ray diffraction results confirmed the intercalating mechanism of Li+ in AlNb11O29 and revealed its high structural stability against cycling. The AlNb11O29 nanowires with a novel bamboo-like morphology afforded a large interfacial area and short charge transport pathways, thus leading to the observed excellent electrochemical properties, including high reversible Li+-storage capacity (266 mA h g–1), safe operating potential (around 1.68 V), and high initial Coulombic efficiency (93.3%) at 0.1 C. At a very high rate (10 C), the AlNb11O29 nanowires still exhibited a capacity as high as 192 mA h g–1, indicating their good rate capability. In addition, at 10 C, 96.3% capacity was retained over 500 cycles, indicating superior cycling stability. A full cell fabricated with AlNb11O29 nanowires as the anode and LiNi0.5Mn1.5O4 microparticles as the cathode delivered a high energy density of 390 W h kg–1 at 0.1 C. This work suggests that the AlNb11O29 nanowires hold a great promise for the development of high-performance lithium-ion batteries for large-scale energy-storage applications.

Exploiting π–π Interactions to Design an Efficient Sorbent for Atrazine Removal from Water
Isil Akpinar - ,
Riki J. Drout - ,
Timur Islamoglu - ,
Satoshi Kato - ,
Jiafei Lyu - , and
Omar K. Farha *
The United States Environmental Protection Agency (EPA) recognizes atrazine, a commonly used herbicide, as an endocrine disrupting compound. Excessive use of this agrochemical results in contamination of surface and ground water supplies via agricultural runoff. Efficient removal of atrazine from contaminated water supplies is paramount. Here, the mechanism governing atrazine adsorption in Zr6-based metal–organic frameworks (MOFs) has been thoroughly investigated by studying the effects of MOF linkers and topology on atrazine uptake capacity and uptake kinetics. We found that the mesopores of NU-1000 facilitated rapid atrazine uptake saturating in <5 min and that the pyrene-based linkers offered sufficient sites for π–π interactions with atrazine as demonstrated by the near 100% uptake. Without the presence of a pyrene-based linker, NU-1008, a MOF similar to NU-1000 with respect to surface area and pore size, removed <20% of the exposed atrazine. These results suggest that the atrazine uptake capacity demonstrated by NU-1000 stems from the presence of a pyrene core in the MOF linker, affirming that π–π stacking is responsible for driving atrazine adsorption. Furthermore, NU-1000 displays an exceptional atrazine removal capacity through three cycles of adsorption–desorption. Powder X-ray diffraction and Brunauer–Emmett–Teller surface area analysis confirmed the retention of MOF crystallinity and porosity throughout the adsorption–desorption cycles.

Two-Dimensional Penta-BN2 with High Specific Capacity for Li-Ion Batteries
Ting Zhang - ,
Yandong Ma *- ,
Baibiao Huang - , and
Ying Dai *
Searching for high-performance electrode materials is one of the most effective ways to improve the energy density of current lithium-ion batteries. Using first-principles calculations, we reveal that pentagonal BN2 (Penta-BN2) can serve as a compelling anode material for lithium-ion batteries. Penta-BN2 harbors intrinsic metallic nature before and after lithiation, showing excellent electrical conductivity. Significantly, the fully lithiated phase of Penta-BN2 is Li3BN2, corresponding to an ultra-high theoretical capacity of 2071 mAh g–1, superior to the capacity of most of the previously reported two-dimensional candidates. Meanwhile, the open-circuit voltage and diffusion barrier height of Penta-BN2 are found to be fascinatingly low. Moreover, in light of its small Young’s modulus and robust lattice toward lithiation, Penta-BN2 can accommodate volume changes during the charging–discharging processes, remarkably beneficial for fabricating flexible electrodes.

Improving Oxygen Reduction Performance by Using Protic Poly(Ionic Liquid) as Proton Conductors
Xiaocong Yan - ,
Fangfang Zhang - ,
Haining Zhang *- ,
Haolin Tang - ,
Mu Pan - , and
Pengfei Fang *
Improving catalytic performance of the oxygen reduction reaction (ORR) of Pt/C catalysts is essential for reducing Pt-loading and the according cost of proton exchange membrane fuel cells (PEMFCs). Herein, we report a new conceptual design of catalyst layers to improve the ORR performance of Pt/C catalysts by replacing perfluorosulfonated ionomers with protic poly(ionic liquid) as a proton conductor. The specific activity of the designed catalyst at 0.9 V under acidic conditions is over three times higher than that of catalyst using Nafion as the proton conductor. Furthermore, the durability test reveals that the introduction of protic poly(ionic liquid) ionomers can protect Pt nanoparticles against aggregation during potential cycles, but it is less durable than Nafion because of the nature of hydrocarbons. Nevertheless, we believe that replacing perfluorosulfonated ionomers with protic poly(ionic liquid) as proton conductors could be a promising strategy to design an efficient cathode for low Pt-loading PEMFCs.

Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes
Yang Yang - ,
Jian Xiong - ,
Shaobo Lai - ,
Rong Zhou - ,
Min Zhao - ,
Hongbo Geng - ,
Yufei Zhang - ,
Yanxiong Fang - ,
Chengchao Li *- , and
Jinbao Zhao *
We report the use of vinyl ethylene carbonate as a new solid electrolyte interface (SEI)-forming additive for Li-metal anodes in carbonate-based electrolyte, which has the advantages of both good storage performance and low price. Compared to the SEI formed in vinyl ethylene carbonate-free electrolyte, the SEI film formed in 10% vinyl ethylene carbonate electrolyte contains a higher relative content of polycarbonate species and a greater amount of decomposition products of LiPF6 salt. Both components are expected to have positive effects on the passivation of Li-metal surface and the accommodation of volume changes of anode during cycling. Scanning electron microscopy images and COMSOL numerical simulation results further confirm that uniform Li deposition morphology can be achieved in the presence of vinyl ethylene carbonate additive. When cycling at the current density of 0.25 mA cm–2 with a cycling capacity of 1.0 mAh cm–2, the vinyl ethylene carbonate-contained Li–Cu cell exhibits a long life span of 816 h (100 cycles) and a relatively high Coulombic efficiency of 93.2%.

Porous and Intercrossed PbI2–CsI Nanorod Scaffold for Inverted Planar FA–Cs Mixed-Cation Perovskite Solar Cells
Xiuwen Xu - ,
Menglin Li - ,
Yue-Min Xie - ,
Yuhui Ma - ,
Chunqing Ma - ,
Yuanhang Cheng - ,
Chun-Sing Lee - , and
Sai-Wing Tsang *
Depth-dependent growth of perovskite crystals remains challenging for high-performance perovskite solar cells made by a two-step spin-coating method. Effective morphology engineering approaches that enable depth-independent perovskite crystals growth and facile characterization technique to monitor subtle yet influential accompanying changes are urgently required. Here, a porous and intercrossed PbI2–(CsI)0.15 nanorods scaffold is prepared by integrating CsI incorporation with toluene dripping in ambient air, and the underlying mechanism is uncovered. With this porous scaffold and moisture-assisted thermal annealing, depth-independent growth of FA0.85Cs0.15PbI3 is achieved, as evidenced in the photoluminescent (PL) spectra acquired by exciting the perovskite film from the top and bottom individually. It is of broad interest that PL spectroscopy is demonstrated as a sensitive technique to monitor the depth-dependent growth of perovskite. Moreover, the resulting inverted planar FA0.85Cs0.15PbI3 perovskite solar cells deliver an efficiency of 16.85%, along with superior thermal and photostability. By incorporating 2% large-sized diammonium cation, propane-1,3-diammonium, the efficiency is further increased to 17.74%. Our work not only proposes a unique porous PbI2–(CsI)0.15 nanorods scaffold to achieve high-quality perovskite films in a two-step method but also highlights the distinctive advantage of PL spectroscopy in monitoring the depth-dependent quality of perovskite films.

Rationally Designed High-Sulfur-Content Polymeric Cathode Material for Lithium–Sulfur Batteries
Amruth Bhargav - ,
Chi-Hao Chang - ,
Yongzhu Fu *- , and
Arumugam Manthiram *
Polyethylene hexasulfide (PEHS) is investigated as a cathode material in lithium batteries. By utilizing a condensation reaction, ethylene groups are inserted between six linear sulfurs in a chain to obtain PEHS while simultaneously exercising control over the polysulfur chain length. Additionally, by selecting a low-molecular-weight organic group, PEHS contains 87 wt % sulfur, thus maximizing the material-level specific capacity to 1217 mA h g–1. Furthermore, this synthesis method is validated using a host of materials characterization techniques. In a battery, PEHS prevents the formation of soluble long-chain intermediates that plague traditional sulfur cathodes. This enables a high material-level capacity of 774 mA h g–1 at 1C-rate alongside a stable performance over 350 cycles with a capacity fade rate of only 0.083% per cycle. We also elucidate the unique reaction pathway of our short-chain polysulfur material and provide a useful foundation for further development of sulfur-containing polymer-based cathode materials.

Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators
Zewei Ren - ,
Yafei Ding - ,
Jinhui Nie - ,
Fan Wang - ,
Liang Xu - ,
Shiquan Lin - ,
Xiangyu Chen *- , and
Zhong Lin Wang
Triboelectric nanogenerators (TENGs) have been widely applied for energy harvesting and self-powered sensing, whereas smart deformable materials can be combined with the TENG to acquire a more intelligent and self-adaptive system. Here, based on the vapor-driven actuation material of a perfluorosulfonic acid ionomer (PFSA), we propose a type of humidity-responsive TENG. The integrated TENG array can automatically bend to the desired angles in response to different humidity conditions, and thus, it can effectively collect energy from both wind and rain drops, where the power density can reach 1.6 W m–2 at a wind speed of 25 m s–1 and 230 mW m–2 under rainy conditions. Meanwhile, this TENG array can fully lay down in dry weather, using the reflective surface to reflect sunlight and heat radiation. The vapor absorption process of the PSFA film can also result in the charge accumulation process. Accordingly, relying on the strong absorption capability of PFSA, a TENG-based vapor sensor with high sensitivity has been developed for monitoring chemical vapor leakage and humidity change. This work opens up a promising approach for the application of the humidity-responsive materials in the field of energy harvesting and self-powered sensors. It can also promote the development of TENG toward a more intelligent direction.

Exploration and Size Engineering from Natural Chalcopyrite to High-Performance Electrode Materials for Lithium-Ion Batteries
Yang Zhang - ,
Ganggang Zhao - ,
Xin Lv - ,
Ye Tian - ,
Li Yang - ,
Guoqiang Zou - ,
Hongshuai Hou - ,
Hongbo Zhao *- , and
Xiaobo Ji *
Compared to chemosynthetic CuFeS2, natural chalcopyrite (CuFeS2) can be regarded as a promising anode material for exploring ultrafast and stable Li-ion batteries benefiting from it being firsthand, eco-friendly, and resource-rich. Considering the nonuniform size distribution in it and the fact that homogeneous grain distributions can effectively restrain the aggregation of active materials, the engineering of size is deemed an effective strategy to achieve excellent Li-storage performances. Herein, varisized natural CuFeS2 are obtained by facial mineral processing technology and outstanding Li-storage performances are exhibited. Along with the decreasing of size, the contribution of pseudocapacitive as well as the ion transfer rates are significantly boosted. As expected, even at 1 A g–1, a remarkable capacity of 1009.7 mA h g–1 is displayed by the sample with the smallest size and most uniform distributions even after 500 cycles. Furthermore, supported by the detailed analysis of in situ X-ray diffraction and kinetic features, a hybrid of multiple lithium-metal sulfur systems and the major origin of the enhanced capacity upon long cycles are confirmed. Remarkably, this work is expected to increase the far-ranging applications of natural chalcopyrite as a firsthand anode material for lithium-ion batteries (LIBs) and inform the readers about the effects of particle size on Li-storage performances.

Ultrasensitive Electrochemical Methane Sensors Based on Solid Polymer Electrolyte-Infused Laser-Induced Graphene
Manan Dosi - ,
Irene Lau - ,
Yichen Zhuang - ,
David S. A. Simakov - ,
Michael W. Fowler - , and
Michael A. Pope *
Methane is a potent greenhouse gas, with large emissions occurring across gas distribution networks and mining/extraction infrastructure. The development of inexpensive, low-power electrochemical sensors could provide a cost-effective means to carry out distributed sensing to identify leaks for rapid mitigation. In this work, we demonstrate a simple and cost-effective strategy to rapidly prototype ultrasensitive electrochemical gas sensors. A room-temperature methane sensor is evaluated which demonstrates the highest reported sensitivity (0.55 μA/ppm/cm2) with a rapid response time (40 s) enabling sub-ppm detection. Porous, laser-induced graphene (LIG) electrodes are patterned directly into commercial polymer films and imbibed with a palladium nanoparticle dispersion to distribute the electrocatalyst within the high surface area support. A pseudo-solid-state ionic liquid/polyvinylidene fluoride electrolyte was painted onto the flexible cell yielding a porous electrolyte, within the porous LIG electrode, simultaneously facilitating rapid gas transport and enabling the room temperature electro-oxidation pathway for methane. The performance of the amperometric sensor is evaluated as a function of methane concentration, relative humidity, and tested against interfering gases.

Direct Z-Scheme g-C3N4/FeWO4 Nanocomposite for Enhanced and Selective Photocatalytic CO2 Reduction under Visible Light
Reshma Bhosale - ,
Srashti Jain - ,
Chathakudath Prabhakaran Vinod - ,
Santosh Kumar *- , and
Satishchandra Ogale *
Photocatalytic reduction of CO2 to renewable solar fuels is considered to be a promising strategy to simultaneously solve both global warming and energy crises. However, development of a superior photocatalytic system with high product selectivity for CO2 reduction under solar light is the prime requisite. Herein, a series of nature-inspired Z-scheme g C3N4/FeWO4 composites are prepared for higher performance and selective CO2 reduction to CO as solar fuel under solar light. The novel direct Z-scheme coupling of the visible light-active FeWO4 nanoparticles with C3N4 nanosheets is seen to exhibit excellent performance for CO production with a rate of 6 μmol/g/h at an ambient temperature, almost 6 times higher compared to pristine C3N4 and 15 times higher than pristine FeWO4. More importantly, selectivity for CO is 100% over other carbon products from CO2 reduction and more than 90% over H2 products from water splitting. Our results clearly demonstrate that the staggered band structure between FeWO4 and C3N4 reflecting the nature-inspired Z-scheme system not only favors superior spatial separation of the electron–hole pair in g-C3N4/FeWO4 but also shows good reusability. The present work provides unprecedented insights for constructing the direct Z-scheme by mimicking the nature for high performance and selective photocatalytic CO2 reduction into solar fuels under solar light.
Functional Inorganic Materials and Devices

Toward a Fast and Highly Responsive SnSe2-Based Photodiode by Exploiting the Mobility of the Counter Semiconductor
Emma P. Mukhokosi - ,
Basanta Roul - ,
Saluru B. Krupanidhi - , and
Karuna K. Nanda *
In photodetection, the response time is mainly controlled by the device architecture and electron/hole mobility, while the absorption coefficient and the effective separation of the electrons/holes are the key parameters for high responsivity. Here, we report an approach toward the fast and highly responsive infrared photodetection using an n-type SnSe2 thin film on a p-Si(100) substrate keeping the overall performance of the device. The I–V characteristics of the device show a rectification ratio of ∼147 at ±5 V and enhanced optoelectronic properties under 1064 nm radiation. The responsivity is 0.12 A/W at 5 V, and the response/recovery time constants were estimated as ∼57 ± 25/34 ± 15 μs, respectively. Overall, the response times are shown to be controlled by the mobility of the constituent semiconductors of a photodiode. Further, our findings suggest that n-SnSe2 can be integrated with well-established Si technology with enhanced optoelectronic properties and also pave the way in the design of fast response photodetectors for other wavelengths as well.

Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane
Yunsong Zhu - ,
Hongbing Cai - ,
Huaiyi Ding - ,
Nan Pan - , and
Xiaoping Wang *
The cost-effective production of flexible interconnects is a challenge in epidermal electronics. Here we report a low-cost approach for producing and patterning graphene films from polydimethylsiloxane films by direct laser scribing in ambient air. The produced graphene films exhibit high electrical conductivity and excellent mechanical properties and can thus be used directly as a flexible conductive layer without the need for metals. The skinlike pressure sensor with these layers exhibits ultrahigh sensitivity (∼480 kPa–1) while maintaining the fast response/relaxation time (2 μs/3 μs) and excellent cycle stability (>4000 repetitive cycles). Moreover, it can naturally attach to the skin to monitor the wrist pulse. In addition, a 7 × 7 sensor array has been fabricated, which possesses the capability to detect the spatial distribution of pressure. This device has great potential for application in epidermal electronics because of its low cost and high performance.

Glucose-Fueled Micromotors with Highly Efficient Visible-Light Photocatalytic Propulsion
Qinglong Wang - ,
Renfeng Dong *- ,
Chun Wang - ,
Shuyu Xu - ,
Decheng Chen - ,
Yuying Liang - ,
Biye Ren - ,
Wei Gao - , and
Yuepeng Cai *
Synthetic micro/nanomotors fueled by glucose are highly desired for numerous practical applications because of the biocompatibility of their required fuel. However, currently all of the glucose-fueled micro/nanomotors are based on enzyme-catalytic-driven mechanisms, which usually suffer from strict operation conditions and weak propulsion characteristics that greatly limit their applications. Here, we report a highly efficient glucose-fueled cuprous oxide@N-doped carbon nanotube (Cu2O@N-CNT) micromotor, which can be activated by environment-friendly visible-light photocatalysis. The speeds of such Cu2O@N-CNT micromotors can reach up to 18.71 μm/s, which is comparable to conventional Pt-based catalytic Janus micromotors usually fueled by toxic H2O2 fuel. In addition, the velocities of such motors can be efficiently regulated by multiple approaches, such as adjusting the N-CNT content within the micromotors, glucose concentrations, or light intensities. Furthermore, the Cu2O@N-CNT micromotors exhibit a highly controllable negative phototaxis behavior (moving away from light sources). Such motors with outstanding propulsion in biological environments and wireless, repeatable, and light-modulated three-dimensional motion control are extremely attractive for future practical applications.

Inkjet Printing of Reactive Silver Ink on Textiles
Hasan Shahariar - ,
Inhwan Kim - ,
Henry Soewardiman - , and
Jesse S. Jur *
Inkjet printing of functional inks on textiles to embed passive electronics devices and sensors is a novel approach in the space of wearable electronic textiles. However, achieving functionality such as conductivity by inkjet printing on textiles is challenged by the porosity and surface roughness of textiles. Nanoparticle-based conductive inks frequently cause blockage/clogging of inkjet printer nozzles, making it a less than ideal method for applying these functional materials. It is also very challenging to create a conformal conductive coating and achieve electrically conductive percolation with the inkjet printing of metal nanoparticle inks on rough and porous textile and paper substrates. Herein, a novel reliable and conformal inkjet printing process is demonstrated for printing particle-free reactive silver ink on uncoated polyester textile knit, woven, and nonwoven fabrics. The particle-free functional ink can conformally coat individual fibers to create a conductive network within the textile structure without changing the feel, texture, durability, and mechanical behavior of the textile. It was found that the conductivity and the resolution of the inkjet-printed tracks are directly related with the packing and the tightness of fabric structures and fiber sizes of the fabrics. It is noteworthy that the electrical conductivity of the inkjet-printed conductive coating on pristine polyethylene terephthalate fibers is improved by an order of magnitude by in situ heat-curing of the textile surface during printing as the in situ heat-curing process minimizes the wicking of the ink into the textile structures. A minimum sheet resistance of 0.2 ± 0.025 and 0.9 ± 0.02 Ω/□ on polyester woven and polyester knit fabrics is achieved, respectively. These findings aim to advance E-textile product design through integration of inkjet printing as a low-cost, scalable, and automated manufacturing process.

Detection of Fake Alcoholic Beverages Using Electrolyte-Free Nanogap Electrochemical Cells
Tse-Hsien Ou - ,
Yifei Wang - ,
Dan Fang - ,
S. R. Narayanan - , and
Wei Wu *
Because of the similarity of odor, appearance, and chemical structure of methanol and ethanol, measuring the low concentration of methanol in an alcoholic beverage is difficult to perform in a quick, quantitative, and repeatable fashion. However, it is important for people to monitor the content of methanol in a liquor because a high amount of methanol absorbed will result in blindness, coma, and death. In response to this need, we have developed electrolyte-free methanol electrolysis and ethanol electrolysis based on the nanogap electrochemical cells for the methanol and ethanol sensing. Upon applying a voltage, a high electric field across the nanogap cell enhances the solution ionization and the ion transport rate. Moreover, the nanoscale distance between the electrodes provides a shorter path for electrolysis to easily occur. The nanogap electrochemical cells not only make the direct electrolyte-free organic solvent electrolysis possible but also enhance the sensitivity of the chemical of interest in low-concentration solutions without the influence of the added electrolyte. The nanogap electrochemical cells have been demonstrated having high sensitivity to detect 0.15% methanol volume concentration in deionized water solutions without adding any electrolyte, and its ability for the fake alcoholic beverages’ detection has successfully demonstrated.

Epitaxial Integration on Si(001) of Ferroelectric Hf0.5Zr0.5O2 Capacitors with High Retention and Endurance
Jike Lyu - ,
Ignasi Fina - ,
Josep Fontcuberta - , and
Florencio Sánchez *
Epitaxial ferroelectric Hf0.5Zr0.5O2 films have been successfully integrated in a capacitor heterostructure on Si(001). The orthorhombic Hf0.5Zr0.5O2 phase, [111] out-of-plane oriented, is stabilized in the films. The films present high remnant polarization Pr close to 20 μC/cm2, rivaling with equivalent epitaxial films on single crystalline oxide substrates. Retention time is longer than 10 years for a writing field of around 5 MV/cm, and the capacitors show endurance up to 109 cycles for a writing voltage of around 4 MV/cm. It is found that the formation of the orthorhombic ferroelectric phase depends critically on the bottom electrode, being achieved on La0.67Sr0.33MnO3 but not on LaNiO3. The demonstration of excellent ferroelectric properties in epitaxial films of Hf0.5Zr0.5O2 on Si(001) is relevant toward fabrication of devices that require homogeneity in the nanometer scale, as well as for better understanding of the intrinsic properties of this promising ferroelectric oxide.

Schottky Barrier Height Modulation Using Interface Characteristics of MoS2 Interlayer for Contact Structure
Seung-Hwan Kim - ,
Kyu Hyun Han - ,
Gwang-Sik Kim - ,
Seung-Geun Kim - ,
Jiyoung Kim - , and
Hyun-Yong Yu *
Schottky barrier height (SBH) engineering of contact structures is a primary challenge to achieve high performance in nanoelectronic and optoelectronic applications. Although SBH can be lowered through various Fermi-level (FL) unpinning techniques, such as a metal/interlayer/semiconductor (MIS) structure, the room for contact metal adoption is too narrow because the work function of contact metals should be near the conduction band edge (CBE) of the semiconductor to achieve low SBH. Here, we propose a novel structure, the metal/transition metal dichalcogenide/semiconductor structure, as a contact structure that can effectively lower the SBH with wide room for contact metal adoption. A perpendicularly integrated molybdenum disulfide (MoS2) interlayer effectively alleviates FL pinning by reducing metal-induced gap states at the MoS2/semiconductor interface. Additionally, it can induce strong FL pinning of contact metals near its CBE at the metal/MoS2 interface. The technique using FL pinning and unpinning at metal/MoS2/semiconductor interfaces is first introduced in the MIS scheme to allow the use of various contact metals. Consequently, significant reductions of the SBH from 0.48 to 0.12 eV for GaAs and from 0.56 to 0.10 eV for Ge are achieved with several different contact metals. This work significantly reduces the dependence on contact metals with lowest SBH and proposes a new way of overcoming current severe contact issues for future nanoelectronic and optoelectronic applications.

Se/S Ratio-Dependent Properties and Application of Gradient-Alloyed CdSe1–xSx Quantum Dots: Shell-free Structure, Non-blinking Photoluminescence with Single-Exponential Decay, and Efficient QLEDs
Huimin Zhang - ,
Fangfang Wang - ,
Yanmin Kuang - ,
Zhaohan Li - ,
Qingli Lin *- ,
Huaibin Shen - ,
Hongzhe Wang *- ,
Lijun Guo - , and
Lin Song Li
Colloidal quantum dots (QDs) are promising optical and optoelectronic materials for various applications. The excited state properties are important indexes to assess the quality of QDs and may directly affect their applications. Different from controlling surface engineering (surface ligands, shell thickness, etc.) to adjust excited state properties, high-quality shell-free alloyed CdSe1–xSx (simplified as CdSeS) QDs with controlled excited state properties were synthesized by tuning the composition and using diphenylphosphine as a beneficial additive at a low temperature (∼180 °C). The optimized CdSeS shell-free alloyed QDs (Se/S = 1:8) exhibited excellent optical properties with tuning of the excited state, including single-exponential photoluminescence (PL) decay dynamics, a narrow full width at half maximum of 28 nm, and non-blinking emission behavior (>98% “on” time). Furthermore, all-solution-processed, multilayered quantum dot light-emitting diodes were fabricated using the conventional device structure to assess the performance of QDs with composition-controlled excited states. The best device displayed a maximum luminance of 92,330 cd m–2, a current efficiency of 50.3 cd A–1, and an external quantum efficiency of 14.5%.

Palladium/Bismuth/Copper Hierarchical Nano-Architectures for Efficient Hydrogen Evolution and Stable Hydrogen Detection
Lijun Zheng - ,
Shizheng Zheng - ,
Hongrui Wei - ,
Lingling Du - ,
Zhengyou Zhu - ,
Jian Chen - , and
Dachi Yang *
Efficient, stable electrode catalysts and advanced hydrogen sensing materials are the core of the hydrogen production and hydrogen detection for guaranteeing the safe issues. Although a universal material to achieve the above missions is highly desirable, it remains challenging. Here, we report palladium/bismuth/copper hierarchical nanoarchitectures (Pd/Bi/Cu HNAs) for advanced dual-applications toward hydrogen evolution reaction (HER) and hydrogen detection, via first electrodeposition of cylindrical nanowires and subsequent wet-chemical etching art. For HER, the Pd/Bi/Cu HNAs present the overpotential (79 mV at 10 mA–2) and tafel slope (61 mV dec–1) closing to those of Pt/C. For hydrogen detection, the Pd/Bi/Cu HNAs was able to work at a wide-temperature range (∼156–418 K), and remarkably, their critical temperature (∼156 K) of the “reversing sensing behavior” is much lower than that of pure Pd nanowires (278 K). These excellent performances are ascribed to the synergic effect of hierarchical morphology induced more exposure of Pd, and the Pd d-band modification via Cu and Bi dopants. It is feasible that Pd/Bi/Cu HNAs serve as universal materials for both efficient catalysts toward hydrogen evolution via water electrolysis and wide-temperature adapted hydrogen detection.

Multifunctional Screen-Printed TiO2 Nanoparticles Tuned by Laser Irradiation for a Flexible and Scalable UV Detector and Room-Temperature Ethanol Sensor
Georges Dubourg *- and
Marko Radović
Recently, multifunctional devices printed on flexible substrates, with multisensing capability, have found new demand in practical fields of application, such as wearable electronics, soft robotics, interactive interfaces, and electronic skin design, revealing the vital importance of precise control of the fundamental properties of metal oxide nanomaterials. In this paper, a novel low-cost and scalable processing strategy is proposed to fabricate all-printed multisensing devices with UV- and gas-sensing capabilities. This undertaken approach is based on the hierarchical combination of the screen-printing process and laser irradiation post-treatment. The screen-printing is used for the patterning of silver interdigitated electrodes and the active layer based on anatase TiO2 nanoparticles, whereas the laser processing is utilized to fine-tune the UV and ethanol-sensing properties of the active layer. Different characterization techniques demonstrate that the laser fluence can be adjusted to optimize the morphology of the TiO2 film by increasing the contribution from volume porosity, to improve its electrical properties and enhance its UV photoresponse and ethanol-sensing characteristics at room temperature. Furthermore, results of the UV and ethanol-sensing investigation show that the optimized UV and ethanol sensors have good repeatability, relatively fast response/recovery times, and excellent mechanical flexibility.

Highly Efficient Vacancy-Driven Photothermal Therapy Mediated by Ultrathin MnO2 Nanosheets
Li Wang - ,
Shanyue Guan *- ,
Yangziwan Weng - ,
Si-Min Xu - ,
Heng Lu - ,
Xiangmin Meng - , and
Shuyun Zhou *
In medical applications, two-dimensional nanomaterials have been widely studied on account of their intriguing properties such as good biocompatibility, stability, and multifunctionality. Herein, an ultrathin MnO2 nanosheet has been fabricated by a simplistic hydrothermal process. The high photothermal conversion performance (62.4%) can be attributed to the vacancy in the ultrathin MnO2 nanosheet, as confirmed by the extended X-ray absorption fine structure results and the density functional theory calculation, benefiting photoacoustic imaging-guided cancer therapy. This highly efficient vacancy-induced photothermal therapy has been reported for the first time. As a result, this work demonstrates that this ultrathin MnO2 nanosheet has a potential to construct a nanosystem for imaging-guided cancer therapy.
Organic Electronic Devices

Controlled Enhancement in Hole Injection at Gold-Nanoparticle-on-Organic Electrical Contacts Fabricated by Spark-Discharge Aerosol Technique
Jongcheon Lee - ,
Hyungchae Kim - ,
Kyuhee Han - ,
Yongmoon Lee - ,
Mansoo Choi - , and
Changsoon Kim *
We demonstrate that hole injection from a top electrode composed of Au nanoparticles (AuNPs) capped with a thick Au layer into an underlying organic semiconductor, N,N′-diphenyl-N,N′-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4′-diamine (DNTPD), is significantly enhanced compared to that in a control device whose top electrode is composed entirely of a thick Au layer. The fabrication of this organic hole-only device with the AuNP electrode is made possible by dry, room-temperature distribution of AuNPs onto DNTPD using a spark-discharge aerosol technique capable of varying the average diameter (D̅) of the AuNPs. The enhancement in hole injection is found to increase with decreasing D̅, with the current density of a device with D̅ = 1.1 nm being more than 3 orders of magnitude larger than that of the control device. Intensity-modulated photocurrent measurements show that the built-in potentials of the devices with the AuNP electrode are smaller than that of the control device by as much as 0.68 V, indicating that the enhanced hole injection originates from the increased work functions of these devices, which in turn decreases the hole injection barrier heights. X-ray photoelectron spectroscopy reveals that the increased work functions of the AuNP electrodes are due to surface oxidation of the AuNPs resulting in AuN and Au3N. The degree of oxidation of the AuNPs increases with decreasing D̅, consistent with the D̅-dependencies of the hole injection enhancement and the built-in potential reduction.

Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules
Venkatesh Piradi - ,
Xiaopeng Xu - ,
Zaiyu Wang - ,
Jazib Ali - ,
Qiang Peng *- ,
Feng Liu *- , and
Xunjin Zhu *
Diketopyrrolopyrrole–ethynylene-bridged porphyrin dimers are capped with electron-deficient 3-ethylrhodanine (A2) via a π-bridge of phenylene ethynylene, affording two new acceptor–donor–acceptor structural porphyrin dimers (DPP-2TTP and DPP-2TP) with strong absorption in ranges of 400–550 nm (Soret bands) and 700–900 nm (Q bands). Their intrinsic absorption deficiency between the Soret and Q bands could be perfectly compensated by a wide-bandgap small molecule DR3TBDTTF (D*) with absorption at 500–700 nm. Impressively, the optimal ternary device based on the blend films of DPP-2TPP, DR3TBDTTF (20 wt %), and PC71BM shows a PCE of 11.15%, whereas the binary devices based on DPP-2TTP/PC71BM and DPP-2TP/PC71BM blend films exhibit PCEs of 9.30 and 8.23%, respectively. The high compatibility of the low bandgap porphyrin dimers with the wide-bandgap small molecule provides a new threesome with PC71BM for highly efficient panchromatic ternary organic solar cells.

High-Efficiency Blue Phosphorescent Organic Light-Emitting Devices with Low Efficiency Roll-Off at Ultrahigh Luminance by the Reduction of Triplet-Polaron Quenching
Ziwei Yu - ,
Jiaxin Zhang - ,
Shihao Liu - ,
Letian Zhang - ,
Yi Zhao - ,
Hongyu Zhao *- , and
Wenfa Xie *
High-performance phosphorescent organic light-emitting devices (PhOLEDs) at high luminance are still a remaining problem that needs to be solved, especially blue PhOLEDs. Here, 5-(5-9H-carbazol-9-yl)pyridin-2-yl)-8-(9H-carbazol-9-yl)-5H-pyrido[3,2-b]indole (p2PCB2CZ) with excellent characteristics as a host is designed to realize a novel host–guest system without hole trapping effect in blue PhOLEDs. The device in which p2PCB2CZ and bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III) (FIrpic) is used as host and guest, respectively, is proposed to improve the performances of blue PhOLEDs at high luminance, especially at ultrahigh luminance (>30000 cd/m2). The maximum external quantum efficiency (EQE) of this type of blue PhOLEDs is 19.2%, while the maximum EQE of the reference blue PhOLEDs is 18.7%. Nevertheless, the p2PCB2CZ-based devices exhibit significant advantages at high luminance, because its EQE still attains to 10.8% even when the luminance increases to 30000 cd/m2, which is 1.67 times that of the reference device. From measurements based on steady-state and time-resolved spectroscopies, the reduction of triplet-polaron quenching in p2PCB2CZ-based devices is proved to be the main reason for improving the performances of blue PhOLEDs at high luminance.

Configuration-Controllable E/Z Isomers Based on Tetraphenylethene: Synthesis, Characterization, and Applications
Wanli Tian - ,
Tingting Lin - ,
Hua Chen - , and
Weizhi Wang *
Configuration-controllable E/Z isomers based on tetraphenylethene were prepared with a facile and effective method. First, compounds 1 and 2, configuration-controllable precursors of E/Z isomers, were synthesized. Then, pure E/Z isomers were obtained via Suzuki reaction, avoiding the difficulties of separation. The conformational changes of E/Z isomers can occur through photoactivation. Importantly, red-shifts of 66 nm from 6 (E-) to 3 (Z-) and 58 nm from 7 (E-) to 4 (Z-) were observed remarkably on the photoluminescence (PL) emission spectra. The Z isomer showed a longer fluorescence lifetime compared with the E isomer. The Z isomers 3 and 4 exhibited piezofluorochromism under grinding, whereas the E isomers 6 and 7 showed no such behaviors. The E isomer has better thermal stability than the Z isomer. Lastly, graphene-like molecules were synthesized with the FeCl3/CH3NO2 system. The E and Z isomers after oxidation showed negligible differences in the PL emission spectra because the effective conjugated lengths of oxidized E and Z isomers were both extended. Furthermore, the fabricated field-effect transistors showed nice performance with mobilities of 0.92 and 1.14 cm–2 V–1 s–1 at low operating voltages, respectively.

Large-Size Single-Crystal Oligothiophene-Based Monolayers for Field-Effect Transistors
Vladimir V. Bruevich - ,
Anastasia V. Glushkova - ,
Olena Yu. Poimanova - ,
Roman S. Fedorenko - ,
Yuriy N. Luponosov - ,
Artem V. Bakirov - ,
Maxim A. Shcherbina - ,
Sergei N. Chvalun - ,
Andrey Yu. Sosorev - ,
Linda Grodd - ,
Souren Grigorian - ,
Sergei A. Ponomarenko - , and
Dmitry Yu. Paraschuk *
High structural quality of crystalline organic semiconductors is the basis of their superior electrical performance. Recent progress in quasi two-dimensional (2D) organic semiconductor films challenges bulk single crystals because both demonstrate competing charge-carrier mobilities. As the thinnest molecular semiconductors, monolayers offer numerous advantages such as unmatched flexibility and light transparency as well they are an excellent platform for sensing. Oligothiophene-based materials are among the most promising ones for light-emitting applications because of the combination of efficient luminescence and decent charge-carrier mobility. Here, we demonstrate single-crystal monolayers of unprecedented structural order grown from four alkyl-substituted thiophene and thiophene–phenylene oligomers. The monolayer crystals with lateral dimensions up to 3 mm were grown from the solution on substrates with various surface energies and roughness by drop or spin-casting with subsequent slow solvent evaporation. Our data indicate that 2D crystallization resulting in single-crystal monolayers occurs at the receding gas–solution–substrate contact line. The structural properties of the monolayers were studied by grazing-incidence X-ray diffraction/reflectivity, atomic force and differential interference contrast microscopies, and imaging spectroscopic ellipsometry. These highly ordered monolayers demonstrated an excellent performance in organic field-effect transistors approaching the best values reported for the thiophene or thiophene–phenylene oligomers. Our findings pave the way for efficient monolayer organic electronics highlighting the high potential of simple solution-processing techniques for the growth of large-size single-crystal monolayers with excellent structural order and electrical performance competing against bulk single crystals.
Functional Nanostructured Materials (including low-D carbon)

2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals
Kevin J. De France - ,
Mouhanad Babi - ,
Jaana Vapaavuori - ,
Todd Hoare - ,
Jose Moran-Mirabal *- , and
Emily D. Cranston *
Although two-dimensional hydrogel thin films have been applied across many biomedical applications, creating higher dimensionality structured hydrogel interfaces would enable potentially improved and more biomimetic hydrogel performance in biosensing, bioseparations, tissue engineering, drug delivery, and wound healing applications. Herein, we present a new and simple approach to control the structure of hydrogel thin films in 2.5D. Hybrid suspensions containing cellulose nanocrystals (CNCs) and aldehyde- or hydrazide-functionalized poly(oligoethylene glycol methacrylate) (POEGMA) were spin-coated onto prestressed polystyrene substrates to form cross-linked hydrogel thin films. The films were then structured via thermal shrinking, with control over the direction of shrinking leading to the formation of biaxial, uniaxial, or hierarchical wrinkles. Notably, POEGMA-only hydrogel thin films (without CNCs) did not form uniform wrinkles due to partial dewetting from the substrate during shrinking. Topographical feature sizes of CNC–POEGMA films could be tuned across 2 orders of magnitude (from ∼300 nm to 20 μm) by varying the POEGMA concentration, the length of poly(ethylene glycol) side chains in the polymer, and/or the overall film thickness. Furthermore, by employing adhesive masks during the spin-coating process, structured films with gradient wrinkle sizes can be fabricated. This precise control over both wrinkle size and wrinkle topography adds a level of functionality that to date has been lacking in conventional hydrogel networks.

Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene
Chao-Hui Yeh - ,
Po-Yuan Teng - ,
Yu-Chiao Chiu - ,
Wen-Ting Hsiao - ,
Shawn S. H. Hsu - , and
Po-Wen Chiu *
High-quality graphene grown on metal-free substrates represents a vital milestone that provides an atomic clean interface and a complementary metal-oxide-semiconductor-compatible manufacturing process for electronic applications. We report a scalable approach to fabricate radio frequency field-effect transistors with a graphene channel grown directly on the sapphire substrate using the technique of remote-catalyzed chemical vapor deposition (CVD). A mushroom-shaped AlOx top gate is used to allow the self-aligned drain/source contacts, yielding remarkable increase of device transconductance and reduction of the associated parasitic resistance. The quality of thus-grown graphene is reflected in the high extrinsic cutoff frequency and maximum oscillation frequency of 10.1 and 5.6 GHz for the graphene channel of length 200 nm and width 80 μm, respectively, potentially comparable with those of transferred CVD graphene at the same channel length and holding promise for applications in high-speed wireless communications.

Mechanism of Photoluminescence Intermittency in Organic–Inorganic Perovskite Nanocrystals
Juan F. Galisteo-López *- ,
Mauricio E. Calvo - ,
T. Cristina Rojas - , and
Hernán Míguez *
Lead halide perovskite nanocrystals have demonstrated their potential as active materials for optoelectronic applications over the past few years. Nevertheless, one issue that hampers their applicability has to do with the observation of photoluminescence intermittency, commonly referred to as “blinking”, as in their inorganic counterparts. Such behavior, reported for structures well above the quantum confinement regime, has been discussed to be strongly related to the presence of charge carrier traps. In this work, we analyze the characteristics of this intermittency and explore the dependence on the surrounding atmosphere, showing evidence for the critical role played by the presence of oxygen. We discuss a possible mechanism in which a constant creation/annihilation of halide-related carrier traps takes place under light irradiation, with the dominant rate being determined by the atmosphere.

Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury
Pei Lay Yap - ,
Shervin Kabiri - ,
Diana N. H. Tran - , and
Dusan Losic *
Engineering of multifunctional binding chemistry on graphene composites using thiol–ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol–ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L–1 dosage of adsorbent used to remove 95% Hg (II) (∼1.5 mg L–1) within 90 min. The high adsorption capacity of 169 ± 19 mg g–1, high selectivity toward Hg in the presence of 30 times higher concentration of competing ions (Cd, Cu, Pb) and high regeneration ability (>97%) for five consecutive adsorption–desorption cycles were achieved. Comparative study with commercial activated carbon using spiked Hg (II) river water confirmed the high performance and potential of this adsorbent for real mercury remediation of environmental and drinking waters.

Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property
Na-Yeong Kim - ,
Young-Chul Leem - ,
Sang-Hyun Hong - ,
Jin-Ho Park - , and
Sang-Youp Yim *
We demonstrated the effects of monolayer graphene and hexagonal boron nitride (h-BN) on the stability and detection performance of two types of substrates in surface-enhanced Raman scattering (SERS): a two-dimensional (2D) monolayer/Ag nanoparticle (NP) substrate and a Au NP/2D monolayer/Ag NP substrate. Graphene and h-BN, which have different electrical and chemical properties, were introduced in close contact with the metal NPs and had distinctly different effects on the plasmonic near-field interactions between metal NPs in the subnanometer-scale gap and on the electron transport behavior. A quantitative comparison was possible due to reproducible SERS signals across the entire substrates prepared by simple and inexpensive fabrication methods. The hybrid platform, an insulating h-BN monolayer covering the Ag NP substrate, ensured the long-term oxidative stability for over 80 days, which was superior to the stability achieved using conducting graphene. Additionally, a sandwich structure using an h-BN monolayer exhibited excellent SERS sensitivity with a detection limit for rhodamine 6G as low as 10–12 M; to the best of our knowledge, this is the best SERS detection limit achieved using monolayer h-BN as a gap-control material. In this study, we suggest an efficient strategy for hybridizing the desired 2D layers with metal nanostructures for SERS applications, where the substrate stability and electromagnetic field enhancement are particularly crucial for the various applications that utilize metal/2D hybrid structures.

Crystalline–Amorphous Permalloy@Iron Oxide Core–Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents
Yong Sun - ,
Junwei Zhang - ,
Yan Zong - ,
Xia Deng - ,
Hongyang Zhao - ,
Juan Feng - ,
Mi He - ,
Xinghua Li *- ,
Yong Peng *- , and
Xinliang Zheng
The exploration of high-efficiency microwave absorption materials with lightweight and hydrophobic features is highly expected to reduce or eliminate the electromagnetic pollution. Graphene-based nanocomposites are universally acknowledged as promising candidates for absorbing microwaves due to their remarkable dielectric properties and lightweight characteristic. However, the hydrophilicity of graphene may reduce their stability and restrict the applications in moist environment. Herein, a well-designed heterostructure composed of crystalline permalloy core and amorphous iron oxide shell was uniformly adhered on oleylamine-modified graphene nanosheets by a one-pot thermal decomposition method. Compared with the recognized hydrophilic graphene-based hybrid materials, the permalloy@iron oxide/graphene nanocomposites show excellent hydrophobic and water-resistant features with a water contact angle of 136.5°. Besides, the nanocomposites show high-efficiency microwave absorption performance, benefiting from the tunneling effect, polarization, interface interaction, impedance matching condition, and synergistic effect between core–shell permalloy@iron oxide nanoparticles and graphene nanosheets. A broad effective absorption bandwidth with reflection loss (RL) value exceeding −10 dB can be obtained from 4.25 to 18 GHz, covering about 86% measured frequency range when the absorber thickness is 2.0–5.0 mm. Also, the microwave absorption performance of nanocomposites can be tuned by changing the amount of graphene. More importantly, a greatly improved microwave absorption effectiveness of −71.1 dB can be achieved for the nanocomposites in comparison with the bare permalloy@iron oxide nanoparticles (−5.6 dB) and oleylamine-modified GO nanosheets (−3.56 dB). The lightweight and hydrophobic permalloy@iron oxide/graphene nanocomposites with high-efficiency microwave absorption performance are highly promising to improve the environmental adaptability of electric devices, especially in the wet environment.

Lateral Two-Dimensional Material Heterojunction Photodetectors with Ultrahigh Speed and Detectivity
Ding-Rui Chen - ,
Mario Hofmann - ,
He-Ming Yao - ,
Sheng-Kuei Chiu - ,
Szu-Hua Chen - ,
Yi-Ru Luo - ,
Chia-Chen Hsu - , and
Ya-Ping Hsieh *
Lateral heterojunctions in two-dimensional (2D) materials have demonstrated potential for high-performance sensors because of the unique electrostatic conditions at the interface. The increased complexity of producing such structures, however, has prevented their widespread use. We here demonstrate the simple and scalable fabrication of heterojunctions by a one-step synthesis process that yields photodetectors with superior device performance. Catalytic conversion of a solid precursor at optimized conditions was found to produce lateral nanostructured junctions between graphene domains and 3 nm thin amorphous carbon films. Carrier transport in these heterojunctions was found to proceed by minimizing the path through the amorphous carbon barriers, which results in a self-selective Schottky emission process with high uniformity and low emission barriers. We demonstrate the potential of thus produced heterojunctions by realizing a photodetector that combines an ultrahigh detectivity of 1013 Jones with microsecond response time, which represents the highest performance of 2D material heterojunction devices. These attractive features are retained even for millimeter-scale devices, and the demonstrated ability to produce transparent, patterned, and flexible sensors extends lateral heterojunction sensors toward wearable and large-scale electronics.

Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity
Nguyen Xuan Viet - ,
Shigeru Kishimoto - , and
Yutaka Ohno *
Electrochemical sensors based on carbon nanotubes (CNTs) have great potential for use in wearable or implantable biomedical sensor applications because of their excellent mechanical flexibility and biocompatibility. However, the main challenge associated with CNT-based sensors is their uniform and reproducible fabrication on the flexible plastic film. Here, we introduce and demonstrate a highly reliable technique to fabricate flexible CNT microelectrodes on a plastic film. The technique involves a process whereby the CNT film is formed by the dry transfer process based on the floating-catalyst chemical vapor deposition. An oxide protection layer, which is used to cover the CNT thin film during the fabrication process, minimizes contamination of the surface. The fabricated flexible CNT microelectrodes show almost ideal electrochemical characteristics for microelectrodes with the average value of the quartile potentials, ΔE = |E3/4 – E1/4|, being 60.4 ± 2.9 mV for the 28 electrodes, while the ideal value of ΔE = 56.4 mV. The CNT microelectrodes also showed enhanced resistance to surface fouling during dopamine oxidation in comparison to carbon fiber and gold microelectrodes; the degradation of the oxidation current after 10 consecutive cycles were 1.8, 8.3, and 13.9% for CNT, carbon fiber, and gold microelectrodes, respectively. The high-sensitivity detection of dopamine is also demonstrated with differential-pulse voltammetry, with a resulting limit of detection of ∼50 nM. The reliability, uniformity, and sensitivity of the present CNT microelectrodes provide a platform for flexible electrochemical sensors.

Self-Powered Intelligent Water Meter for Electrostatic Scale Preventing, Rust Protection, and Flow Sensor in a Solar Heater System
Weichao Wang - ,
Yonghui Wu - ,
Zhenghu Chang - ,
Fangqi Chen - ,
Heyi Wang - ,
Guangqin Gu - ,
Haiwu Zheng *- ,
Gang Cheng *- , and
Zhong Lin Wang *
Triboelectric nanogenerators (TENGs) have been investigated for mechanical energy harvesting because of their high-energy conversion efficiency, low cost, ease of manufacturing, and so on. This paper deals with designing a kind of water-fluid-driven rotating TENG (WR-TENG) inspired by the structure of a water meter. The designed WR-TENG is effectively integrated into a self-powered electrostatic scale-preventing and rust protection system. The WR-TENG can generate a constant DC voltage up to about 7.6 kV by using a voltage-doubling rectifier circuit (VDRC) to establish a high-voltage electrostatic field in the water tank. A WR-TENG, a VDRC, and an electric water heating tank are the components of the whole system. The system is convenient to be installed in any waterway system, effectively preventing the rusting of stainless steel and restraining the formation of scale when the water is heated to 65 ± 5 °C. Moreover, the approximately linear relationship between the short-circuit current and the rotation rate of the WR-TENG makes employing it as a self-powered water flow sensor possible. This work enables a facile, safe, and effective approach for electrostatic scale prevention, rust protection, and flow sensing in solar heaters, which will enrich the high-voltage applications of TENGs.

Tuning the Mechanical Behavior of Metal–Phenolic Networks through Building Block Composition
Gyeongwon Yun - ,
Joseph J. Richardson - ,
Matthew Biviano - , and
Frank Caruso *
Metal–phenolic networks (MPNs) are an emerging class of functional metal–organic materials with a high degree of modularity in terms of the choice of metal ion, phenolic ligand, and assembly method. Although various applications, including drug delivery, imaging, and catalysis, have been studied with MPNs, in the form of films and capsules, the influence of metals and organic building blocks on their mechanical properties is poorly understood. Herein, we demonstrate that the mechanical properties of MPNs can be tuned through choice of the metal ion and/or phenolic ligand. Specifically, the pH of the metal ion solution and/or size of phenolic ligand influence the Young’s modulus (EY) of MPNs (higher pHs and smaller ligands lead to higher EY). This study systematically investigates the roles of both metal ions and ligands on the mechanical properties of metal–organic materials and provides new insight into engineering the mechanical properties of coordination films.

Annealing Temperature-Dependent Terahertz Thermal–Electrical Conversion Characteristics of Three-Dimensional Microporous Graphene
Meng Chen - ,
Yingxin Wang - ,
Jianguo Wen - ,
Honghui Chen - ,
Wenle Ma - ,
Fei Fan - ,
Yi Huang *- , and
Ziran Zhao *
Three-dimensional microporous graphene (3DMG) possesses ultrahigh photon absorptivity and excellent photothermal conversion ability and shows great potential in energy storage and photodetection, especially for the not well-explored terahertz (THz) frequency range. Here, we report on the characterization of the THz thermal–electrical conversion properties of 3DMG with different annealing treatments. We observe distinct behavior of bolometric and photothermoelectric responses varying with annealing temperature. Resistance–temperature characteristics and thermoelectric power measurements reveal that marked charge carrier reversal occurs in 3DMG as the annealing temperature changes between 600 and 800 °C, which can be well explained by Fermi-level tuning associated with oxygen functional group evolution. Benefiting from the large specific surface area of 3DMG, it has an extraordinary capability of reaching thermal equilibrium quickly and exhibits a fast photothermal conversion with a time constant of 23 ms. In addition, 3DMG can serve as an ideal absorber to improve the sensitivity of THz detectors and we demonstrate that the responsivity of a carbon nanotube device could be enhanced by 12 times through 3DMG. Our work provides new insight into the physical characteristics of carrier transport and THz thermal–electrical conversion in 3DMG controlled by annealing temperature and opens an avenue for the development of highly efficient graphene-based THz devices.

High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS2:Graphene Photodetectors Using Direct CVD Growth
Tongxin Chen - ,
Yuewen Sheng - ,
Yingqiu Zhou - ,
Ren-jie Chang - ,
Xiaochen Wang - ,
Hefu Huang - ,
Qianyang Zhang - ,
Linlin Hou - , and
Jamie H. Warner *
We show that reducing the degree of van der Waals overlapping in all 2D ultrathin lateral devices composed of graphene:WS2:graphene leads to significant increase in photodetector responsivity. This is achieved by directly growing WS2 using chemical vapor deposition (CVD) in prepatterned graphene gaps to create epitaxial interfaces. Direct-CVD-grown graphene:WS2:graphene lateral photodetecting transistors exhibit high photoresponsivities reaching 121 A/W under 2.7 × 105 mW/cm2 532 nm illumination, which is around 2 orders of magnitude higher than similar devices made by the layer-by-layer transfer method. The photoresponsivity of our direct-CVD-grown device shows negative correlation with illumination power under different gate voltages, which is different from similar devices made by the transfer method. We show that the high photoresponsivity is due to the lowering of effective Schottky barrier height by improving the contact between graphene and WS2. Furthermore, the direct CVD growth reduces overlapping sections of WS2:Gr and leads to more uniform lateral systems. This approach provides insights into scalable manufacturing of high-quality 2D lateral electronic and optoelectronic devices.

Optimized Synthesis of Nitrogen and Phosphorus Dual-Doped Coal-Based Carbon Fiber Supported Pd Catalyst with Enhanced Activities for Formic Acid Electrooxidation
Mengran Lou - ,
Ruiying Wang *- ,
Jie Zhang - ,
Xincun Tang - ,
Luxiang Wang - ,
Yong Guo - ,
Dianzeng Jia *- ,
Hongli Shi - ,
Lili Yang - ,
Xingchao Wang - ,
Zhipeng Sun - ,
Tao Wang - , and
Yudai Huang
Development of a Pd-based catalyst with highly active and durable properties for formic acid oxidation reaction at the anode remains an important matter of interest in the research community. Herein, we have designed novel coal-based carbon fibers (Coal-CFs) with dicyandiamide (DCD) as nitrogen (N) source, triphenylphosphine (TPP) as phosphorus (P) source dual-doped to support Pd catalysts (Pd/NP-Coal-CFs(DCD/TPP)), which exhibit superior catalytic performance toward formic acid oxidation reaction. Mass activity of formic acid oxidation of Pd/NP-Coal-CFs(DCD/TPP) catalyst is 536.6 mA·mg–1Pd, which is 2.5 times higher than that of Pd/Coal-CFs catalyst. The higher specific surface areas, exclusive electron transport path, and the high synergistic interaction of N and P are the favorable phenomena for catalytic performance. The addition of coal not only increases the abundant defects sites but also makes the utilization of coal with high added value. This N and P dual-doped catalyst inspires an idea for promoting applications in practical fuel cells.

Electrically Conductive, Monolithic Metal–Organic Framework–Graphene (MOF@G) Composite Coatings
Mohamed H. Hassan - ,
Rana R. Haikal - ,
Tawheed Hashem - ,
Julia Rinck - ,
Franz Koeniger - ,
Peter Thissen - ,
Stefan Heiβler - ,
Christof Wöll - , and
Mohamed H. Alkordi *
We present a novel approach to produce a composite of the HKUST-1 metal–organic framework (MOF) and graphene, which is suited for the fabrication of monolithic coatings of solid substrates. In order to avoid the degradation of graphene electrical properties resulting from chemical functionalization (e.g., oxidation yielding graphene oxide, GO), commercial, nonmodified graphene was utilized. The one-pot synthesis of the moldable composite material allows for a controllable loading of graphene and the tuning of porosity. Potentially, this facile synthesis can be transferred to other MOF systems. The monolithic coatings reported here exhibit high surface areas (1156–1078 m2/g). The electrical conductivity was high (a range of 7.6 × 10–6 S m–1to 6.4 × 10–1 S m–1) and was found to be proportional to the graphene content. The ability to readily attain different forms and shapes of the conductive, microporous composites indicates that the MOF@G system can provide a compelling approach to access various applications of MOFs, specifically in electrochemical catalysis, supercapacitors, and sensors.

A Sequential Process of Graphene Exfoliation and Site-Selective Copper/Graphene Metallization Enabled by Multifunctional 1-Pyrenebutyric Acid Tetrabutylammonium Salt
Jie Zhao - ,
Chenyu Wen - ,
Rui Sun - ,
Shi-Li Zhang - ,
Biao Wu - , and
Zhi-Bin Zhang *
This paper reports a procedure leading to shear exfoliation of pristine few-layer graphene flakes in water and subsequent site-selective formation of Cu/graphene films on polymer substrates, both of which are enabled by employing the water soluble 1-pyrenebutyric acid tetrabutylammonium salt (PyB-TBA). The exfoliation with PyB-TBA as an enhancer leads to as-deposited graphene films dried at 90 °C that are characterized by electrical conductivity of ∼110 S/m. Owing to the good affinity of the tetrabutylammonium cations to the catalyst PdCl42–, electroless copper deposition selectively in the graphene films is initiated, resulting in a self-aligned formation of highly conductive Cu/graphene films at room temperature. The excellent solution-phase and low-temperature processability, self-aligned copper growth, and high electrical conductivity of the Cu/graphene films have permitted fabrication of several electronic circuits on plastic foils, thereby indicating their great potential in compliant, flexible, and printed electronics.

Calcareous Foraminiferal Shells as a Template for the Formation of Hierarchal Structures of Inorganic Nanomaterials
Mahmud Diab - ,
Karam Shreteh - ,
Michael Volokh - ,
Sigal Abramovich - ,
Uri Abdu - , and
Taleb Mokari *
A microorganism template approach has been explored for the fabrication of various well-defined three-dimensional (3D) structures. However, most of these templates suffer from small size (few μm), difficulty to remove the template, or low surface area, which affect their potential use in different applications or makes industrial scale-up difficult. Conversely, foraminifer’s microorganisms are large (up to 200 mm), consist of CaCO3 (easy to dissolve in mild acid), and have a relatively high surface area (≈5 m2 g–1). Herein, we demonstrate the formation of hierarchical structures of inorganic materials using calcareous foraminiferal shells such as Sorites, Globigerinella siphonifera, Lox-ostomina amygdaleformis, Calcarina baculatus or hispida, and Peneroplis planatus. Several techniques, such as thermal decomposition of single-source precursors of metal oxides or sulfides, reduction of metal salts directly on the surfaces, and redox reactions, were used for coating of different shell materials and several hybrid compositions, which possess nanofeatures. Finally, we examined the role of the prepared 3D structures on the reduction of 4-nitrophenol (4-NP), ethanol electrooxidation, and water purification. A remarkable performance was achieved in each application. The hierarchical structure leads to the reduction of 4-NP within several minutes, a 27 mA cm–2 current density peak was obtained for ethanol electrooxidation, and more than 95% of the organic dye contaminants were successfully removed. These results show that using foraminiferal shells offers a new way for designing complex hierarchical structures with unique properties.

Preparation of Coaxial Polylactic Acid–Propyl Gallate Electrospun Fibers and the Effect of Their Coating on Salmon Slices during Chilled Storage
Ting Ding - ,
Tingting Li - , and
Jianrong Li *
Pseudomonas fluorescens bacteria can grow well in cold-storage conditions and cause food spoilage. Quorum sensing (QS) is a biological pathway existing in a large number of microorganisms, through which bacteria regulate several of their physiological activities. A number of substances have been identified as quorum sensing inhibitors (QSIs); they can interfere with the QS system and control bacterial spoilage characteristics and production of virulence factors. In our previous study, propyl gallate at sub-minimum inhibitory concentration levels showed a potent anti-QS activity. Thus, in this study, coaxial polylactic acid–propyl gallate electrospun fibers were fabricated and their physicochemical properties were characterized. Salmon slices were coated with these electrospun fibers and the effect of this coating on the salmon slices during chilled storage was evaluated. The results showed that the electrospun fibers had a small diameter and smooth surface with no beads or other defects. The thermal stability, tensile strength, and other properties of the fibers were suitable for refrigerated storage conditions. Without inhibiting the bacterial growth in the salmon slices, the QSI-containing electrospun fibers exerted a significant inhibitory effect on the production of total volatile base nitrogen and trimethylamine. Furthermore, the deterioration of muscle tissue in the salmon slices was significantly delayed during cold storage. Quantitative analysis indicated that the electrospun fibers had a significant inhibitory effect on the bacterial spoilage ability. The results suggested that the electrospun fibers loaded with QSIs might be an effective strategy to control food spoilage and enhance the quality of aquatic food products.
Applications of Polymer, Composite, and Coating Materials

Versatile and Validated Optical Authentication System Based on Physical Unclonable Functions
Riikka Arppe-Tabbara *- ,
Mohammad Tabbara - , and
Thomas Just Sørensen *
Counterfeit consumer products, electronic components, and medicines generate heavy economic losses, pose a massive security risk, and endanger human lives on a daily basis. Combatting counterfeits requires incorporation of uncopiable or unclonable features in each and every product. By exploiting the inherent randomness of stochastic processes, an optical authentication system based on physical unclonable functions (PUFs) was developed. The system relies on placing unique tags—PUF-tags—on the individual products. The tags can be created using commercial printing and coating technologies using several combinations of carrier materials and taggant materials. The authentication system was found to be independent of how contrast was generated, and examples of PUF-tags based on scattering, absorption, and luminescence were made. A version of the authentication using the combination of scattering-based PUF-tags and a smartphone-based reader was validated on a sample size of 9720 unique codes. With zero false positives in 29 154 matches, an encoding capacity of 2.5 × 10120, and a low cost of manufacture, the scattering-based authentication system was found to have the potential to solve the problem of counterfeit products.

Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring
Jianxun Dai - ,
Hongran Zhao - ,
Xiuzhu Lin - ,
Sen Liu - ,
Yunshi Liu - ,
Xiupeng Liu - ,
Teng Fei *- , and
Tong Zhang *
Respiration monitoring is important for evaluating human health. Humidity sensing is a promising way to establish a relationship between human respiration and electrical signal. This work describes polymer humidity sensors with ultrafast response for respiration monitoring. The humidity-sensitive polyelectrolyte is in situ cross-linked on the substrate printed with interdigitated electrodes by a thiol–ene click reaction. The polyelectrolyte humidity sensor shows rapid water adsorption/desorption ability, excellent stability, and repeatability. The sensor with ultrafast response and recovery (0.29/0.47 s) when changing humidity between 33 and 95% shows good application prospects in breath monitoring and touchless sensing. Different respiration patterns can be distinguished, and the breath rate/depth of detection subjects can also be determined by the sensor. In addition, the obtained sensor can sense the skin evaporation in a noncontact way.

High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO2 Nanocomposites
Qingfu Guo - ,
Jingjing Li - ,
Bin Zhang - ,
Guangming Nie *- , and
Debao Wang *
A difunctional porous network of poly(indole-6-carboxylicacid) (PICA)/TiO2 nanocomposites is first prepared using TiO2 nanorod arrays as the scaffold. Because of the synergistic effect of PICA and TiO2, the nanocomposites show good electrochemical performance, a high specific capacitance value (23.34 mF cm–2), and excellent galvanostatic charge–discharge stability. Meanwhile, this nanocomposite can be reversibly switched (yellow, green, brown) with a high coloration efficiency (124 cm2 C–1). An asymmetric electrochromic-supercapacitor device (ESD) is also constructed using the PICA/TiO2 nanocomposites as the anode material and poly(3,4-ethylenedioxythiophene) as the cathode material. This ESD has robust cycle stability and a high specific capacitance value (9.65 mF cm–2), which can be switched from light green to dark blue. After charging, the device can light up a single LED for 108 s, and the energy storage level can also be monitored by the corresponding color changes. This constructed ESD will have great potential applications in intelligent energy storage and other smart electronic fields.

Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation
Rujing Hou - ,
Stefan J. D. Smith *- ,
Colin D. Wood - ,
Roger J. Mulder - ,
Cher Hon Lau - ,
Huanting Wang - , and
Matthew R. Hill *
Membranes are particularly attractive for lowering the energy intensity of separations as they eliminate phase changes. While many tantalizing polymers are known, limitations in selectivity and stability slightly preclude further development. Mixed-matrix membranes may address these shortcomings. Key to their realization is the intimate mixing between the polymer and the additive to eliminate nonselective transport, improve selectivity, and resist physical aging. Polymers of intrinsic microporosity (PIMs) have inherently promising gas transport properties. Here, we show that porous additives can improve transport and resist aging in PIM-1. We develop a simple, low-cost, and scalable hyper-cross-linked polymer (poly-dichloroxylene, pDCX), which was hydroxylated to form an intimate mixture with the polar PIM-1. Solvent variation allowed control of physical aging rates and improved selectivity for smaller gases. This detailed study has allowed many interactions within mixed matrix membranes to be directly elucidated and presents a practical means to stabilize porous polymers for separation applications.

Robust Superhydrophobic Surface Based on Multiple Hybrid Coatings for Application in Corrosion Protection
Yaya Zhou - ,
Yibing Ma - ,
Youyi Sun *- ,
Zhiyuan Xiong - ,
Chunhong Qi - ,
Yinghe Zhang - , and
Yaqing Liu
A new class of superhydrophobic surface based on multiple hybrid coatings is proposed and prepared to improve mechanical and reproduction stability. It does not only show a large water contact angle (ca. 174.5°) but also a slight decrease (ca. 6.4%) of water contact angle after 100 mechanical abrasion cycles. Furthermore, the water contact angle changes slightly (relative standard deviation, 0.14%) for the three superhydrophobic surfaces prepared with the same procedure. The application of superhydrophobic multiple hybrid coatings in corrosion protection is further investigated by the Tafel polarization curves and electrochemical impedance spectroscopy. The superhydrophobic multiple hybrid coatings showed lower corrosion current (1.4 × 10–11 A/cm2), lower corrosion rate (ca. 1.6 × 10–7 mm/year), and larger polarization resistance (7.9 × 104 MΩ cm2) in 3.5 wt % NaCl aqueous solution compared to other superhydrophobic coatings reported in previous works. This work not only confirms the formation of robust superhydrophobic surface for real application in corrosion protection but also provides a new model of superhydrophobic surface based on multiple hybrid coatings with high mechanical, chemical, and reproduction stability for various applications.

Graphene Quantum Dots-Doped Thin Film Nanocomposite Polyimide Membranes with Enhanced Solvent Resistance for Solvent-Resistant Nanofiltration
Shuxuan Li - ,
Can Li - ,
Xiaojuan Song - ,
Baowei Su *- ,
Bishnupada Mandal *- ,
Babul Prasad - ,
Xueli Gao - , and
Congjie Gao
The core of the organic solvent nanofiltration (OSN) technology is solvent-resistant nanofiltration (SRNF) membranes. Till now, relative poor performance of solvent resistance is still the bottleneck of industrial application of SRNF membranes. This work reports a novel polyimide (PI)-based thin-film nanocomposite (TFN) membrane which was embedded with graphene quantum dots (GQDs) and showed an improved solvent resistance for OSN application. This kind of SRNF membrane, termed (PI-GQDs/PI)XA, was synthesized via serial processes of interfacial polymerization (IP), imidization, cross-linking, and solvent activation. The IP process was performed between an aqueous m-phenylenediamine solution doped with GQDs, having an average size of 1.9 nm, and an 1,2,4,5-benzenetetracarboxylic acyl chloride n-hexane solution on the PI substrate surface. The prepared (PI-GQDs-50/PI)X SRNF membranes without organic solvent activation achieved an ethanol permeance of nearly 50% higher than those of the GQD-free membranes under the same preparation conditions, while no compromise of the dye rejection was observed. Further, after the solvent activation using N,N-dimethylformamide (DMF) at 80 °C for 30 min, the ethanol permeance achieved about an 8-folds increment, from 2.84 to 22.6 L m–2 h–1 MPa–1. Interestingly, the rejection of rhodamine B also increased from 97.8 to 98.6%. A long-term permeation test of more than 100 h using rose bengal (RB, 1017 Da)/DMF solution at room temperature demonstrated that the synthesized (PI-GQDs-50/PI)XA membranes could maintain the DMF permeance and the RB rejection as high as 18.3 L m–2 h–1 MPa–1 and 99.9%, respectively. Moreover, the immersion test of the prepared (PI-GQDs-50/PI)XA SRNF membranes in both DMF and ethanol at room temperature for about one year also demonstrated the long-term organic solvent stability, indicating their good potential for OSN application.

Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures
Chuanxin Weng - ,
Zhaohe Dai - ,
Guorui Wang - ,
Luqi Liu *- , and
Zhong Zhang *
Many three-dimensional (3D) nanomaterial-based assemblies need incorporation with elastomers to attain stretchability—that also compromises their pristine advantages for functional applications. Here, we show the design of elastomer-free, highly deformable silver nanowire (AgNW) conductors through dip-coating AgNWs on a 3D polymeric scaffold and following a simple triaxial compression approach. The resulting 3D AgNW conductors exhibit good stability of resistance under multimodal deformation, such as stretching, compressing, and bending as well as comparable conductivity with those elastomer-based ones. Moreover, the buckled structures endow our 3D conductors with novel negative Poisson’s ratio behavior, which can offer good comfortability to curvilinear surfaces. The combination of mechanical properties, conductive performance, and unique deformation characteristics can satisfy multiscale conformal mechanics with a soft, curvilinear human body.

Development of Multimodal Antibacterial Surfaces Using Porous Amine-Reactive Films Incorporating Lubricant and Silver Nanoparticles
Jieun Lee - ,
Jin Yoo - ,
Joonwon Kim - ,
Yeongseon Jang - ,
Kwangsoo Shin - ,
Eunsu Ha - ,
Sangryeol Ryu - ,
Byung-Gee Kim - ,
Sanghyuk Wooh *- , and
Kookheon Char *
Anti-biofouling has been improved by passive or active ways. Passive antifouling strategies aim to prevent the initial adsorption of foulants, while active strategies aim to eliminate proliferative fouling by destruction of the chemical structure and inactivation of the cells. However, neither passive antifouling strategies nor active antifouling strategies can solely resist biofouling due to their inherent limitations. Herein, we successfully developed multimodal antibacterial surfaces for waterborne and airborne bacteria with the benefit of a combination of antiadhesion (passive) and bactericidal (active) properties of the surfaces. We elaborated multifunctionalizable porous amine-reactive (PAR) polymer films from poly(pentafluorophenyl acrylate) (PPFPA). Pentafluorophenyl ester groups in the PAR films facilitate creation of multiple functionalities through a simple postmodification under mild condition, based on their high reactivity toward various primary amines. We introduced amine-containing poly(dimethylsiloxane) (amine-PDMS) and dopamine into the PAR films, resulting in infusion of antifouling silicone oil lubricants and formation of bactericidal silver nanoparticles (AgNPs), respectively. As a result, the PAR film-based lubricant-infused AgNPs-incorporated surfaces demonstrate outstanding antibacterial effects toward both waterborne and airborne Escherichia coli, suggesting a new door for development of an effective multimodal anti-biofouling surface.

Stimuli-Responsive Luminescent Copper Nanoclusters in Alginate and Their Sensing Ability for Glucose
Siyu Gou - ,
Yu-e Shi *- ,
Pan Li - ,
Henggang Wang - ,
Tianzi Li - ,
Xuming Zhuang *- ,
Wei Li - , and
Zhenguang Wang *
Visually observable pH-responsive luminescent materials are developed by integrating the properties of aggregation-induced emission enhancement of Cu nanoclusters (NCs) and the Ca2+-triggered gelatin of alginate. Sodium alginate, CaCO3 nanoparticles, and Cu NCs are dispersed in aqueous solution, which is in a transparent fluid state, showing weak photoluminescence (PL). The introduced H+ can react with the CaCO3 nanoparticles to produce free Ca2+, which can cross-link the alginate chains into gel networks. Meanwhile, a dramatic increase in the PL intensity of Cu NCs and a blue shift in the PL peak appeared, assigned to the Ca2+-induced enhancement and gelatin-induced enhancement, respectively. Their potential application as a sensor for glucose is also demonstrated based on the principle that glucose oxidase can recognize glucose and produce H+, which further triggers the above-mentioned two-stage enhancement. A linear relationship between the PL intensity and the concentration of glucose in the range of 0.1–2.0 mM is obtained, with the limit of detection calculated as 3.2 × 10–5 M.

Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions
Xiangyu Ge - ,
Jinjin Li *- ,
Chenhui Zhang - ,
Yuhong Liu - , and
Jianbin Luo
Several ionic liquids (ILs) are formed in situ with monovalent metal salts and ethylene glycol (EG). The macroscale superlubricity and antiwear properties of the ILs were studied between ceramic materials. Superlow coefficients of friction of less than 0.01 could be obtained for all ILs at silicon nitride (Si3N4) interfaces induced by tribochemical reactions. Notably, the IL ([Li(EG)]PF6) formed with LiPF6 and EG exhibited the greatest superlubricity and antiwear properties. The results of film thickness calculations and surface analysis showed that the lubrication regime during the superlubricity period was the mixed lubrication, and a composite tribochemical layer (composed of phosphates, fluorides, silica (SiO2), and ammonia-containing compounds), hydration layer, and fluid film contributed to superlubricity and wear protection. It was found that the small size of metal cations was beneficial for alleviating wear, and PF6– anions exhibited the smallest friction and best antiwear performance at Si3N4 interfaces. This work studied the lubricity and antiwear properties of ILs with different cations and anions, enriching the range of alternative ILs for macroscale superlubricity and low wear, and is of importance to engineering applications.

Electrospun CuS/PVP Nanowires and Superior Near-Infrared Filtration Efficiency for Thermal Shielding Applications
Young-Tae Kwon - ,
Seung Han Ryu - ,
Ji Won Shin - ,
Woon-Hong Yeo *- , and
Yong-Ho Choa *
Selective filtration of near-infrared (NIR) regions is of primary importance to energy saving via thermal shielding. However, uniform coating of highly effective nanomaterials on flexible substrates remains very challenging. Here, we introduce new material processing and fabrication methodologies that manufacture electrospun copper sulfide/polyvinylpyrrolidone (CuS/PVP) nanowires for enhanced thermal shielding efficiency. Electrospinning offers well-dispersed CuS nanoparticles in a thermal shielding film, which is not achievable in typical solution coating processes. Directly deposited CuS/PVP nanowires on a flexible polymer membrane are enabled by a fluorination treatment that decreases the interfacial electrostatic repulsion. Monitoring of in situ temperature change of a box-shielded, CuS/PVP nanowire film demonstrates excellent NIR shielding efficiency (87.15%). Direct integration of the film with a model car and exposure to direct sunlight demonstrates about twice-higher shielding efficiency than commercial tungsten oxide films. Overall, the comprehensive study of nanomaterial preparation, surface treatment, and integration techniques allows the fabrication of highly flexible and reliable thermal shielding films.
Surfaces, Interfaces, and Applications

Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO2.5
Muhammad Shahrukh Saleem - ,
Bin Cui - ,
Cheng Song *- ,
Yiming Sun - ,
Youdi Gu - ,
Ruiqi Zhang - ,
Muhammad Umer Fayaz - ,
Xiaofeng Zhou - ,
Peter Werner - ,
Stuart S. P. Parkin - , and
Feng Pan *
SrFeOx (SFOx) compounds exhibit ionic conduction and oxygen-related phase transformation, having potential applications in solid oxide fuel cells, smart windows, and memristive devices. The phase transformation in SFOx typically requires a thermal annealing process under various pressure conditions, hindering their practical applications. Here, we have achieved a reversible phase transition from brownmillerite (BM) to perovskite (PV) in SrFeO2.5 (SFO2.5) films through ionic liquid (IL) gating. The real-time phase transformation is imaged using in situ high-resolution transmission electron microscopy. The magnetic transition in SFO2.5 is identified by fabricating an assisted La0.7Sr0.3MnO3 (LSMO) bottom layer. The IL-gating-converted PV phase of a SrFeO3−δ (SFO3−δ) layer shows a ferromagnetic-like behavior but applies a huge pinning effect on LSMO magnetic moments, which consequently leads to a prominent exchange bias phenomenon, suggesting an uncompensated helical magnetic structure of SFO3−δ. On the other hand, the suppression of both magnetic and exchange coupling signals for a BM-phased SFO2.5 layer elucidates its fully compensated G-type antiferromagnetic nature. We also demonstrated that the phase transition by IL gating is an effective pathway to tune the resistive switching parameters, such as set, reset, and high/low-resistance ratio in SFO2.5-based resistive random-access memory devices.

Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications
Wallace R. Rolim - ,
Joana C. Pieretti - ,
Débora L. S. Renó - ,
Bruna A. Lima - ,
Mônica H. M. Nascimento - ,
Felipe N. Ambrosio - ,
Christiane B. Lombello - ,
Marcelo Brocchi - ,
Ana Carolina S. de Souza - , and
Amedea B. Seabra *
Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.

Tailoring Fast Directional Mass Transport of Nano-Confined Ag–Cu Alloys upon Heating: Effect of the AlN Barrier Thickness
Vicente Araullo-Peters - ,
Claudia Cancellieri - ,
Mirco Chiodi - ,
Jolanta Janczak-Rusch - , and
Lars P. H. Jeurgens *
This study addresses the phase stability and atomic mobility of Ag–Cu40at.% nano-alloys confined by AlN in a nanomultilayered configuration during thermal treatment. To this end, nanomultilayers (NMLs) with a fixed Ag–Cu40at.% nanolayer thickness of 8 nm and a AlN barrier nanolayer with variable thickness of 4, 8, or 10 nm were deposited by magnetron sputtering on sapphire substrates and subsequently isothermally annealed for 5 or 20 min in air in the range of 200–500 °C. The microstructure of the as-deposited and heat-treated NMLs was analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. Annealing of the thicker AlN barrier layers at T > 300 °C leads to the formation of an interconnected network of line-shaped Cu(O) protrusions on the annealed NML surface. The well-defined outflow pattern of Cu(O) originates from the thermally induced surface cracking of the top AlN barriers with subsequent fast mass transport of Cu along the Cu/AlN interfaces toward the surface cracks. The thinnest (i.e., 4 nm thick) AlN barrier layers exhibit a relatively open grain boundary structure and act as nanoporous membranes upon heating, resulting in the formation of a dense and homogenous distribution of Cu(O) and Ag droplets on the NML surface. These findings demonstrate that the microstructure (i.e., layer thicknesses, interface coherency, and texture) of hybrid nanolaminates can be tuned to provide defined pathways for fast, directional transport of the confined metal to the surface at relatively low temperatures, which might open new routes for low-temperature bonding of micro- and nano-scaled systems.

Efficiently Rotating the Magnetization Vector in a Magnetic Semiconductor via Organic Molecules
Xiaolei Wang - ,
Hailong Wang *- ,
Jialin Ma - ,
Xupeng Zhao - , and
Jianhua Zhao *
Local manipulation of the magnetization direction is of significant importance in spintronics because it provides an effective way in nonvolatile device applications for ultrahigh density information storage. However, this modulation is usually restricted to a limited range even through large power input. We demonstrate a large rotation of the magnetization vector in a magnetic semiconductor (Ga,Mn)As (110) thin film by surface decoration of self-assembled molecules. The carrier density of the film is vastly changed by two kinds of molecules acting as electron donors and acceptors, resulting in a prominent variation of the Curie temperature and magnetic anisotropy. The magnetic anisotropic fields tuned by the molecules could be quantitatively determined by planar Hall measurements, based on which the largest rotation angle is calculated to be ∼27°. This value doubles the result obtained by the electric field up to 0.4 V/nm, which is approaching the breakdown strength of common dielectrics. Our work offers a new functionality for effectively tuning the magnetization direction of nanoscale bits, without relying on the magnetic field, spin current, or mechanical strain.

Self-Assembled Three-Dimensional Bi2Te3 Nanowire–PEDOT:PSS Hybrid Nanofilm Network for Ubiquitous Thermoelectrics
Warittha Thongkham - ,
Charoenporn Lertsatitthanakorn - ,
Kanpitcha Jiramitmongkon - ,
Kittipong Tantisantisom - ,
Thitikorn Boonkoom - ,
Manit Jitpukdee - ,
Kitiphat Sinthiptharakoon *- ,
Annop Klamchuen - ,
Monrudee Liangruksa - , and
Paisan Khanchaitit *
Thermoelectric generation capable of delivering reliable performance in the low-temperature range (<150 °C) for large-scale deployment has been a challenge mainly due to limited properties of thermoelectric materials. However, realizing interdependence of topological insulators and thermoelectricity, a new research dimension on tailoring and using the topological-insulator boundary states for thermoelectric enhancement has emerged. Here, we demonstrate a promising hybrid nanowire of topological bismuth telluride (Bi2Te3) within the conductive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) matrix using the in situ one-pot synthesis to be incorporated into a three-dimensional network of self-assembled hybrid thermoelectric nanofilms for the scalable thermoelectric application. Significantly, the nanowire-incorporated film network exhibits simultaneous increase in electrical conductivity and Seebeck coefficient as opposed to reduced thermal conductivity, improving thermoelectric performance. Based on comprehensive measurements for electronic transport of individual nanowires revealing an interfacial conduction path along the Bi2Te3 core inside the encapsulating layer and that the hybrid nanowire is n-type semiconducting, the enhanced thermoelectricity is ascribed to increased hole mobility due to electron transfer from Bi2Te3 to PEDOT:PSS and importantly charge transport via the Bi2Te3–PEDOT:PSS interface. Scaling up the nanostructured material to construct a thermoelectric generator having the generic pipeline-insulator geometry, the device exhibits a power factor and a figure of merit of 7.45 μW m–1 K–2 and 0.048, respectively, with an unprecedented output power of 130 μW and 15 day operational stability at ΔT = 60 °C. Our findings not only encourage a new approach to cost-effective thermoelectric generation, but they could also provide a route for the enhancement of other applications based on the topological nanowire.

Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation
Guangqi Hu - ,
Yuqiong Sun - ,
Yixuan Xie - ,
Shuangshuang Wu - ,
Xuejie Zhang - ,
Jianle Zhuang - ,
Chaofan Hu *- ,
Bingfu Lei *- , and
Yingliang Liu *
UV absorbers are very effective in the fields of antiyellowing, resistance of photocatalytic degradation, and sunscreen cosmetics. However, commercialized UV absorbers have the drawbacks of toxicity, low absorption efficiency, transparency, etc. Here, we report for the first time silicon quantum dots as full-band UV absorbers. The NH-refunctionalized silicon quantum dots with high-performance UV absorption were successfully synthesized under the synergistic effect of sodium citrate and ethanediamine, and the (NH, OH)-functionalized silicon quantum dots (SiQDs) with full-band UV absorption can be achieved by reregulating −NH2 and −OH groups on the surface. The as-prepared (NH, OH)-functionalized SiQDs exhibited good stability and underwent treatment of varying pH and temperature. Furthermore, experimental results demonstrated that compared to commercial water-soluble organic UV absorbers, the (NH, OH)-functionalized SiQDs showed better antiyellowing performance for polyurethane and resistance of photocatalytic degradation for rhodamine B, and presented huge application potential in sunscreen cosmetics. Finally, the UV absorption mechanism of SiQDs was explained to be mainly related to Γ → Γ direct band gap transition, which absorb UV light and release it as thermal radiation.

Bioinspired Nucleobase-Driven Nonswellable Adhesive and Tough Gel with Excellent Underwater Adhesion
Xin Liu - ,
Qin Zhang - ,
Lijie Duan *- , and
Guanghui Gao *
Underwater adhesives have drawn much attention in the areas of industrial and biomedical fields. However, it is still demanding to construct a tough underwater gel-based adhesive completely based on chemical constitution. Herein, a nonswellable and high-strength underwater adhesive gel is successfully fabricated through the random copolymerization of acrylic acid, butyl acrylate, and acrylated adenine in dimethyl sulfoxide (DMSO). The underwater adhesive behavior is skillfully regulated through hydrophobic aggregation induced by water–DMSO solvent exchange. The adhesive gels exhibit an excellent adhesive behavior for polytetrafluoroethylene, plastics, metals, rubber, and glasses in air and various aqueous solutions, including deionized water, seawater, and acid and alkali solutions (pH = 3 and 10, respectively). Moreover, the adhesive gels exhibited robust mechanical performance and remarkable nonswellable behavior, which were particularly important for applications of gel-based adhesives in water. It is anticipated that the strategy of bioinspired nucleobase-assisted underwater adhesive gel via hydrophobic aggregation induced by solvent exchange would provide an inspiration for the development of underwater adhesives.

Additive Manufacturing of Mechanically Isotropic Thin Films and Membranes via Microextrusion 3D Printing of Polymer Solutions
Manjot Singh - ,
Alexander P. Haring - ,
Yuxin Tong - ,
Ellen Cesewski - ,
Edwin Ball - ,
Ross Jasper - ,
Eric M. Davis - , and
Blake N. Johnson *
Polymer extrusion additive manufacturing processes, such as fused filament fabrication (FFF), are now being used to explore the fabrication of thin films and membranes. However, the physics of molten polymer extrusion constrains achievable thin film properties (e.g., mechanical isotropy), material selection, and spatial control of film composition. Herein, we present an approach for fabrication of functional polymer thin films and membranes based on the microextrusion printing of polymer solutions, which we refer to as “solvent-cast printing” (SCP). Constructs fabricated via SCP exhibited a 43% reduction in anisotropy of tensile strength relative to those fabricated using FFF. The constructs fabricated via SCP exhibited a lesser extent of visible layering defects relative to those fabricated by FFF. Further, the swelling dynamics of the films varied depending on the membrane fabrication technique (i.e., SCP vs manual drop casting). The opportunity for expanding material selection relative to FFF processes was demonstrated by printing poly(benzimidazole), a high-performance thermoplastic with high glass-transition temperatures (Tg ∼ 400 °C). Results from this work indicate that our new approach could facilitate the manufacture of mechanically isotropic thin films and membranes using currently unprintable high-performance thermoplastics.
Additions and Corrections
Correction to A Stretchable, Transparent, Tough, Ultrathin, and Self-limiting Skin-like Substrate for Stretchable Electronics
Adeela Hanif - ,
Tran Quang Trung - ,
Saqib Siddiqui - ,
Phan Tan Toi - , and
Nae-Eung Lee *
This publication is free to access through this site. Learn More

Correction to Unveiling the Role of Langevin and Trap-Assisted Recombination in Long-Lifespan OLEDs Employing Thermally Activated Delayed Fluorophores
Minghan Cai - ,
Dongdong Zhang - ,
Jingyi Xu - ,
Xiangchen Hong - ,
Chongguang Zhao - ,
Xiaozeng Song - ,
Yong Qiu - ,
Hironori Kaji - , and
Lian Duan *
This publication is free to access through this site. Learn More

Correction to Organometallic Dimers: Application to Work-Function Reduction of Conducting Oxides
Anthony J. Giordano - ,
Federico Pulvirenti - ,
Talha M. Khan - ,
Canek Fuentes-Hernandez - ,
Karttikay Moudgil - ,
Jared H. Delcamp - ,
Bernard Kippelen - ,
Stephen Barlow *- , and
Seth R. Marder *
This publication is free to access through this site. Learn More
Correction to Two-Dimensional Nanochannel Arrays Based on Flexible Montmorillonite Membranes
Mei-Li Liu - ,
Meng Huang - ,
Lian-Yu Tian - ,
Li-Hong Zhao - ,
Bin Ding - ,
De-Bin Kong - ,
Quan-Hong Yang - , and
Jiao-Jing Shao *
This publication is free to access through this site. Learn More
Mastheads
Issue Editorial Masthead
This publication is free to access through this site. Learn More
Issue Publication Information
This publication is free to access through this site. Learn More