
About the Cover:
The GrBP5 dodecapeptide binds to surface, diffuses, undergoes conformational changes via intermolecular interactions, and self-assembles into a crystalline molecular lattice, establishing a chiral relationship with solid graphite, forming a coherent bio/nano soft interface, thereby enabling seamless integration of biology with functional solid.
View the article.In Nano
In Nano: Highlights of Recent ACS Nano Articles
Christen Brownlee
This publication is free to access through this site. Learn More
Perspectives

Optical Manipulation Heats up: Present and Future of Optothermal Manipulation
Pavana Siddhartha Kollipara - ,
Zhihan Chen - , and
Yuebing Zheng *
Optothermal manipulation is a versatile technique that combines optical and thermal forces to control synthetic micro-/nanoparticles and biological entities. This emerging technique overcomes the limitations of traditional optical tweezers, including high laser power, photon and thermal damage to fragile objects, and the requirement of refractive-index contrast between target objects and the surrounding solvents. In this perspective, we discuss how the rich opto-thermo-fluidic multiphysics leads to a variety of working mechanisms and modes of optothermal manipulation in both liquid and solid media, underpinning a broad range of applications in biology, nanotechnology, and robotics. Moreover, we highlight current experimental and modeling challenges in the pursuit of optothermal manipulation and propose future directions and solutions to the challenges.
Reviews

Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics
James Butler - ,
Richard D. Handy - ,
Mathew Upton - , and
Alexandros Besinis *
This publication is Open Access under the license indicated. Learn More
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the “One Health” agenda, appropriate legislation, and risk assessment.

Combined Catalysis: A Powerful Strategy for Engineering Multifunctional Sustainable Lignin-Based Materials
Samson Afewerki *- and
Ulrica Edlund
This publication is Open Access under the license indicated. Learn More
The production and engineering of sustainable materials through green chemistry will have a major role in our mission of transitioning to a more sustainable society. Here, combined catalysis, which is the integration of two or more catalytic cycles or activation modes, provides innovative chemical reactions and material properties efficiently, whereas the single catalytic cycle or activation mode alone fails in promoting a successful reaction. Polyphenolic lignin with its distinctive structural functions acts as an important template to create materials with versatile properties, such as being tough, antimicrobial, self-healing, adhesive, and environmentally adaptable. Sustainable lignin-based materials are generated by merging the catalytic cycle of the quinone–catechol redox reaction with free radical polymerization or oxidative decarboxylation reaction, which explores a wide range of metallic nanoparticles and metal ions as the catalysts. In this review, we present the recent work on engineering lignin-based multifunctional materials devised through combined catalysis. Despite the fruitful employment of this concept to material design and the fact that engineering has provided multifaceted materials able to solve a broad spectrum of challenges, we envision further exploration and expansion of this important concept in material science beyond the catalytic processes mentioned above. This could be accomplished by taking inspiration from organic synthesis where this concept has been successfully developed and implemented.

Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks
Mohammad Javad Afshari - ,
Xiaju Cheng - ,
Guangxin Duan - ,
Ruixue Duan - ,
Shuwang Wu - ,
Jianfeng Zeng - ,
Zi Gu - , and
Mingyuan Gao *
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Articles

Swinging Crystal Edge of Growing Carbon Nanotubes
Georg Daniel Förster - ,
Vladimir Pimonov - ,
Huy-Nam Tran - ,
Saïd Tahir - ,
Vincent Jourdain *- , and
Christophe Bichara *
Recent direct measurements of the growth kinetics of individual carbon nanotubes revealed abrupt changes in the growth rate of nanotubes maintaining the same crystal structure. These stochastic switches call into question the possibility of chirality selection based on growth kinetics. Here, we show that a similar average ratio between fast and slow rates of around 1.7 is observed largely independent of the catalyst and growth conditions. A simple model, supported by computer simulations, shows that these switches are caused by tilts of the growing nanotube edge between two main orientations, close-armchair or close-zigzag, inducing different growth mechanisms. The rate ratio of around 1.7 then simply results from an averaging of the number of growth sites and edge configurations in each orientation. Beyond providing insights on nanotube growth based on classical crystal growth theory, these results point to ways to control the dynamics of nanotube edges, a key requirement for stabilizing growth kinetics and producing arrays of long, structurally selected nanotubes.

An Alkaline Phosphatase-Responsive Aggregation-Induced Emission Photosensitizer for Selective Imaging and Photodynamic Therapy of Cancer Cells
Kristy W. K. Lam - ,
Joe H. C. Chau - ,
Eric Y. Yu - ,
Feiyi Sun - ,
Jacky W. Y. Lam - ,
Dan Ding - ,
Ryan T. K. Kwok *- ,
Jianwei Sun - ,
Xuewen He *- , and
Ben Zhong Tang *
Fluorescence-guided photodynamic therapy (PDT) has been considered as an emerging strategy for precise cancer treatment by making use of photosensitizers (PSs) with reactive oxygen species (ROS) generation. Some efficient PSs have been reported in recent years, but multifunctional PSs that are responsive to cancer-specific biomarkers are rarely reported. In this study, we introduced a phosphate group as a cancer-specific biomarker of alkaline phosphatase (ALP) on a PS with the features of aggregation-induced emission (AIE) for cancer cell imaging and therapy. In cancer cells with high ALP expression, the phosphate group on the AIE probe is selectively hydrolyzed by ALP. Consequently, the hydrophobic probe residue is aggregated in aqueous media and gives a “turn on” fluorescent response. Moreover, fluorescence-guided PDT was realized by the aggregates of probe residue with strong ROS generation efficiency under white light irradiation. Overall, this work presents a strategy of applying ALP-responsive AIE PS for specific imaging cancer cells and succeeding with specific PDT upon the cancer biomarker stimulated responsive reactions.

Targeted Discovery of Low-Coordinated Crystal Structures via Tunable Particle Interactions
Hillary Pan - and
Julia Dshemuchadse *
Particles interacting via isotropic, multiwell pair potentials have been shown to self-assemble into a range of crystal structures, yet how the characteristics of the underlying interaction potential give rise to the resultant structure remains largely unknown. We have thus developed a functional form for the interaction potential in which all features can be tuned independently. We perform continuous parameter space searches by systematically changing pairs of parameters, controlling the various features of the interaction potential. By enforcing a repulsive first well (controlling particle interactions of the first neighbor shell), we stimulate the formation of low-coordinated assemblies. We report the self-assembly of 20 previously unknown crystal structure types, 14 of which have low coordination numbers. Despite limiting the search to a small region of the vast parameter space of possible particle interactions, a wealth of complexity and symmetry is apparent within these crystal structures, which include clathrates with empty cages and low-symmetry structures. Our findings suggest that an unknown number of previously undiscovered crystal structure configurations are possible through self-assembly, which can serve as interesting design targets for soft condensed matter synthesis.

Ferroelectricity in Niobium Oxide Dihalides NbOX2 (X = Cl, I): A Macroscopic- to Microscopic-Scale Study
Chaofei Liu - ,
Xiuying Zhang - ,
Xinyun Wang - ,
Ziying Wang - ,
Ibrahim Abdelwahab - ,
Ivan Verzhbitskiy - ,
Yan Shao - ,
Goki Eda - ,
Wanxin Sun - ,
Lei Shen - , and
Kian Ping Loh *
2D materials with ferroelectric and piezoelectric properties are of interest for energy harvesting, memory storage and electromechanical systems. Here, we present a systematic study of the ferroelectric properties in NbOX2 (X = Cl, I) across different spatial scales. The in-plane ferroelectricity in NbOX2 was investigated using transport and piezoresponse force microscopy (PFM) measurements, where it was observed that NbOCl2 has a stronger ferroelectric order than NbOI2. A high local field, exerted by both PFM and scanning tunneling microscopy (STM) tips, was found to induce 1D collinear ferroelectric strips in NbOCl2. STM imaging reveals the unreconstructed atomic structures of NbOX2 surfaces, and scanning tunneling spectroscopy was used to probe the electronic states induced at defect (vacancy) sites.

Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery
Juan C. Fraire *- ,
Maria Guix - ,
Ana C. Hortelao - ,
Noelia Ruiz-González - ,
Anna C. Bakenecker - ,
Pouria Ramezani - ,
Charlotte Hinnekens - ,
Félix Sauvage - ,
Stefaan C. De Smedt - ,
Kevin Braeckmans *- , and
Samuel Sánchez *
This publication is Open Access under the license indicated. Learn More
Targeted drug delivery depends on the ability of nanocarriers to reach the target site, which requires the penetration of different biological barriers. Penetration is usually low and slow because of passive diffusion and steric hindrance. Nanomotors (NMs) have been suggested as the next generation of nanocarriers in drug delivery due to their autonomous motion and associated mixing hydrodynamics, especially when acting collectively as a swarm. Here, we explore the concept of enzyme-powered NMs designed as such that they can exert disruptive mechanical forces upon laser irradiation. The urease-powered motion and swarm behavior improve translational movement compared to passive diffusion of state-of-the-art nanocarriers, while optically triggered vapor nanobubbles can destroy biological barriers and reduce steric hindrance. We show that these motors, named Swarm 1, collectively displace through a microchannel blocked with type 1 collagen protein fibers (barrier model), accumulate onto the fibers, and disrupt them completely upon laser irradiation. We evaluate the disruption of the microenvironment induced by these NMs (Swarm 1) by quantifying the efficiency by which a second type of fluorescent NMs (Swarm 2) can move through the cleared microchannel and be taken up by HeLa cells at the other side of the channel. Experiments showed that the delivery efficiency of Swarm 2 NMs in a clean path was increased 12-fold in the presence of urea as fuel compared to when no fuel was added. When the path was blocked with the collagen fibers, delivery efficiency dropped considerably and only depicted a 10-fold enhancement after pretreatment of the collagen-filled channel with Swarm 1 NMs and laser irradiation. The synergistic effect of active motion (chemically propelled) and mechanical disruption (light-triggered nanobubbles) of a biological barrier represents a clear advantage for the improvement of therapies which currently fail due to inadequate passage of drug delivery carriers through biological barriers.

Nanovaccines Fostering Tertiary Lymphoid Structure to Attack Mimicry Nasopharyngeal Carcinoma
Zhenfu Wen - ,
Hong Liu - ,
Dongdong Qiao - ,
Haolin Chen - ,
Liyan Li - ,
Zeyu Yang - ,
Chenxu Zhu - ,
Zhipeng Zeng - ,
Yongming Chen *- , and
Lixin Liu *
Tertiary lymphoid structures (TLSs) are formed in inflamed tissues, and recent studies demonstrated that the appearance of TLSs in tumor sites is associated with a good prognosis for tumor patients. However, the process of natural TLSs’ formation was slow and uncontrollable. Herein, we developed a nanovaccine consisting of Epstein–Barr virus nuclear antigen 1 (EBNA1) and a bi-adjuvant of Mn2+ and cytosine-phosphate-guanine (CpG) formulated with tannic acid that significantly inhibited the development of mimicry nasopharyngeal carcinoma by fostering TLS formation. The nanovaccine activated LT-α and LT-β pathways, subsequently enhancing the expression of downstream chemokines, CCL19/CCL21, CXCL10 and CXCL13, in the tumor microenvironment. In turn, normalized blood and lymph vessels were detected in the tumor tissues of the nanovaccine group, correlated with increased infiltration of lymphocytes. Especially, the proportion of the B220+ CD8+ T, which was produced via trogocytosis between T and B cells during activation of T cells, was increased in tumors of the nanovaccine group. Furthermore, the intratumoral effector memory T cells (Tem), CD45+, CD3+, CD8+, CD44+, and CD62L–, did not decrease after blocking the egress of T cells from tumor-draining lymph nodes by FTY-720. These results demonstrated that the nanovaccine can foster TLS formation, which thus enhances local immune responses significantly, delays tumor outgrowth, and prolongs the median survival time of murine models of mimicry nasopharyngeal carcinoma, demonstrating a promising strategy for nanovaccine development.

Dynamic Changes in Heparan Sulfate Nanostructure in Human Pluripotent Stem Cell Differentiation
Deena Al Mahbuba - ,
Sayaka Masuko - ,
Shiwei Wang - ,
Deepsing Syangtan - ,
Jeong Seuk Kang - ,
Yuefan Song - ,
Tay Won Shin - ,
Ke Xia - ,
Fuming Zhang - ,
Robert J. Linhardt - ,
Edward S. Boyden - , and
Laura L. Kiessling *
Heparan sulfate (HS) is a heterogeneous, cell-surface polysaccharide critical for transducing signals essential for mammalian development. Imaging of signaling proteins has revealed how their localization influences their information transfer. In contrast, the contribution of the spatial distribution and nanostructure of information-rich, signaling polysaccharides like HS is not known. Using expansion microscopy (ExM), we found striking changes in HS nanostructure occur as human pluripotent stem (hPS) cells differentiate, and these changes correlate with growth factor signaling. Our imaging studies show that undifferentiated hPS cells are densely coated with HS displayed as hair-like protrusions. This ultrastructure can recruit fibroblast growth factor for signaling. When the hPS cells differentiate into the ectoderm lineage, HS is localized into dispersed puncta. This striking change in HS distribution coincides with a decrease in fibroblast growth factor binding to neural cells. While developmental variations in HS sequence were thought to be the primary driver of alterations in HS-mediated growth factor signaling, our high-resolution images indicate a role for the HS nanostructure. Our study highlights the utility of high-resolution glycan imaging using ExM. In the case of HS, we found that changes in how the polysaccharide is displayed link to profound differences in growth factor binding.

Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes
Jonas Hallstrom *- ,
Ihor Cherniukh - ,
Xun Zha - ,
Maksym V. Kovalenko - , and
Alex Travesset *
We establish the formula representing cubic nanocrystals (NCs) as hard cubes taking into account the role of the ligands and describe how these results generalize to any other NC shapes. We derive the conditions under which the hard cube representation breaks down and provide explicit expressions for the effective size. We verify the results from the detailed potential of mean force calculations for two nanocubes in different orientations as well as with spherical nanocrystals. Our results explicitly demonstrate the relevance of certain ligand conformations, i.e., “vortices”, and show that edges and corners provide natural sites for their emergence. We also provide both simulations and experimental results with single component cubic perovskite nanocrystals assembled into simple cubic superlattices, which further corroborate theoretical predictions. In this way, we extend the Orbifold Topological Model (OTM) accounting for the role of ligands beyond spherical nanocrystals and discuss its extension to arbitrary nanocrystal shapes. Our results provide detailed predictions for recent superlattices of perovskite nanocubes and spherical nanocrystals. Problems with existing united atom force fields are discussed.

Photoactivated MXene Nanosheets for Integrated Bone–Soft Tissue Therapy: Effect and Potential Mechanism
Xiaoyan Qu - ,
Yi Guo - ,
Chenxi Xie - ,
Sihua Li - ,
Zhengqing Liu - , and
Bo Lei *
The bone defects caused by trauma are inevitably accompanied by soft tissue damage. The development of multifunctional bioactive biomaterials with integrated bone and soft tissue regeneration is necessary and needed urgently in orthopedics. In this work, we found that the photoactivated MXene (Ti3C2Tx) nanosheet showed positive effects on promoting both bone and soft tissue regeneration. We further investigated the detailed effect and potential mechanism of photoactivated MXene on tissue regeneration. Photoactivated MXene shows a good thermal effect and robust antibacterial activity to inhibit the expression of inflammation factors and methicillin-resistant Staphylococcus aureus (MRSA) infection and induces the expression of pro-angiogenic factors and soft tissue wound repair. Photoactivated MXene can also regulate the osteogenic differentiation of adipose-derived stem cells (ADSCs) through the ERK signaling pathway by activating the heat shock protein 70 (HSP70) and enhancing the repair of bone tissue. This work sheds light on the development of bioactive MXene with photothermal activation as an efficient strategy for bone and soft tissue regeneration simultaneously.

Atomically Precise Detection and Manipulation of Nitrogen-Vacancy Centers in Nanodiamonds
Bethany M. Hudak *- and
Rhonda M. Stroud
This publication is Open Access under the license indicated. Learn More
Nitrogen-vacancy (NV) centers in nanodiamonds are a promising quantum communication system offering robust and discrete single photon emission, but a more thorough understanding of properties of the NV centers is critical for real world implementation in functional devices. The first step to understanding how factors such as surface, depth, and charge state affect NV center properties is to directly characterize these defects on the atomic scale. Here we use Angstrom-resolution scanning transmission electron microscopy (STEM) to identify a single NV center in a ∼4 nm natural nanodiamond through simultaneous acquisition of electron energy loss and energy dispersive X-ray spectra, which provide a characteristic NV center peak and a nitrogen peak, respectively. In addition, we identify NV centers in larger, ∼15 nm synthetic nanodiamonds, although without the single-defect resolution afforded by the lower background of the smaller natural nanodiamonds. We have further demonstrated the potential to directly position these technologically relevant defects at the atomic scale using the scanning electron beam to “herd” NV centers and nitrogen atoms across their host nanodiamonds.

An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA
Dou Wang - ,
Xuedong Wang - ,
Feidi Ye - ,
Jin Zou - ,
Jiuxin Qu *- , and
Xingyu Jiang *
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a “sample-in-answer-out” single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.

Buckling and Interfacial Deformation of Fluorescent Poly(N-isopropylacrylamide) Microgel Capsules
Fabian Hagemans *- ,
Fabrizio Camerin - ,
Nabanita Hazra - ,
Janik Lammertz - ,
Frédéric Dux - ,
Giovanni Del Monte - ,
Olli-Ville Laukkanen - ,
Jérôme J. Crassous *- ,
Emanuela Zaccarelli *- , and
Walter Richtering
Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson–Kendall–Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

Fundamental Understanding of Ultrathin, Highly Stable Self-Assembled Liquid Crystalline Graphene Oxide Membranes Leading to Precise Molecular Sieving through Non-equilibrium Molecular Dynamics
Shabnam Pathan - ,
Sk Safikul Islam - ,
Ria Sen Gupta - ,
Barnali Maity - ,
P. Rajasekhar Reddy - ,
Samir Mandal - ,
K Anki Reddy *- , and
Suryasarathi Bose *
Self-assembled graphene oxide lyotropic liquid crystal (GO LLC) structures are mostly formed in aqueous medium; however, most GO derivatives are water insoluble, so processing GO LLCs in water poses a practical limitation. The use of polar aprotic solvent (like dimethyl sulfoxide) for the formation of GO LLC structures would be interesting, because it would allow incorporating additives, like photoinitiators or cross-linkers, or blending with polymers that are insoluble in water, which hence would expand its scope. The well-balanced electrostatic interaction between DMSO and GO can promote and stabilize the GO nanosheets’ alignment even at lower concentrations. With this in mind, herein we report mechanically robust, chlorine-tolerant, self-assembled nanostructured GO membranes for precise molecular sieving. Small-angle X-ray scattering and polarized optical microscopy confirmed the alignment of the modified GO nanosheets in polar aprotic solvent, and the LLC structure was effectively preserved even after cross-linking under UV light. We found that the modified GO membranes exhibited considerably improved salt rejection for monovalent ions (99%) and water flux (120 LMH) as compared to the shear-aligned GO membrane, which is well supported by forward osmosis simulation studies. Additionally, our simulation studies indicated that water molecules traveled a longer path while permeating through the GO membrane compared to the GO LLC membrane. Consequently, salt ions permeate slowly across the GO LLC membrane, yielding higher salt rejection than the GO membrane. This begins to suggest strong electrostatic repulsion with the salt ions, causing higher salt rejection in the GO LLC membrane. We foresee that the ordered cross-linked GO sheets contributed to excellent mechanical stability under a high-pressure, cross-flow, chlorine environment. Overall, these membranes are easily scalable, exhibit good mechanical stability, and represent a breakthrough for the potential use of polymerized GO LLC membranes in practical water remediation applications.

Broadband Full-Spectrum Raman Excitation Mapping Reveals Intricate Optoelectronic–Vibrational Resonance Structure of Chirality-Pure Single-Walled Carbon Nanotubes
Paul Finnie *- ,
Jianying Ouyang - , and
Jeffrey A. Fagan
This publication is Open Access under the license indicated. Learn More
The Raman excitation spectra of chirality-pure (6,5), (7,5), and (8,3) single-walled carbon nanotubes (SWCNTs) are explored for homogeneous solid film samples over broad excitation energy and scattering energy ranges using a rapid and relatively simple full spectrum Raman excitation mapping technique. Identification of variation in scattering intensity with sample type and phonon energy related to different vibrational bands is clearly realized. Excitation profiles are found to vary strongly for different phonon modes. Some modes’ Raman excitation profiles are extracted, with the G band profile compared to earlier work. Other modes, such as the M and iTOLA modes, have quite sharp resonance profiles and strong resonances. Conventional fixed wavelength Raman spectroscopy can miss these effects on the scattering intensities entirely due to the significant intensity changes observed for small variations in excitation wavelength. Peak intensities for phonon modes traceable to a pristine carbon lattice forming a SWCNT sidewall were greater for high-crystallinity materials. In the case of highly defective SWCNTs, the scattering intensities of the G band and the defect-related D band are demonstrated to be affected both in absolute intensities and in relative ratio, with the ratio that would be measured by single wavelength Raman scattering dependent on the excitation wavelength due to differences in the resonance energy profiles of the two bands. Lastly it is shown that the approach of this contribution yields a clear path toward increasing the rigor and quantification of resonance Raman scattering intensity measurements through tractable corrections of excitation and emission side variations in efficiency with excitation wavelength.

Resealable Antithrombotic Artificial Vascular Graft Integrated with a Self-Healing Blood Flow Sensor
Kijun Park - ,
Soojung An - ,
Jihyun Kim - ,
Sungjun Yoon - ,
Jihyang Song - ,
Daekwang Jung - ,
Jae Park - ,
Yeontaek Lee - ,
Donghee Son - , and
Jungmok Seo
Coronary artery bypass grafting is commonly used to treat cardiovascular diseases by replacing blocked blood vessels with autologous or artificial blood vessels. Nevertheless, the availability of autologous vessels in infants and the elderly and low long-term patency rate of grafts hinder extensive application of autologous vessels in clinical practice. The biological and mechanical properties of the resealable antithrombotic artificial vascular graft (RAAVG) fabricated herein, comprising a bioelectronic conduit based on a tough self-healing polymer (T-SHP) and a lubricious inner coating, match with the functions of autologous blood vessels. The self-healing and elastic properties of the T-SHP confer resistance against mechanical stimuli and promote conformal sealing of suturing regions, thereby preventing leakage (stable fixation under a strain of 50%). The inner layer of the RAAVG presents antibiofouling properties against blood cells and proteins, and antithrombotic properties, owing to its lubricious coating. Moreover, the blood-flow sensor fabricated using the T-SHP and carbon nanotubes is seamlessly integrated into the RAAVG via self-healing and allows highly sensitive monitoring of blood flow at low and high flow rates (10- and 100 mL min–1, respectively). Biocompatibility and feasibility of RAAVG as an artificial graft were demonstrated via ex vivo, and in vivo experiment using a rodent model. The use of RAAVGs to replace blocked blood vessels can improve the long-term patency rate of coronary artery bypass grafts.

Molecular Scale Structure and Kinetics of Layer-by-Layer Peptide Self-Organization at Atomically Flat Solid Surfaces
Ayhan Yurtsever *- ,
Linhao Sun *- ,
Kaito Hirata - ,
Takeshi Fukuma - ,
Siddharth Rath - ,
Hadi Zareie - ,
Shinji Watanabe - , and
Mehmet Sarikaya *
Understanding the mechanisms of self-organization of short peptides into two- and three-dimensional architectures are of great interest in the formation of crystalline biomolecular systems and their practical applications. Since the assembly is a dynamic process, the study of structural development is challenging at the submolecular dimensions continuously across an adequate time scale in the natural biological environment, in addition to the complexities stemming from the labile molecular structures of short peptides. Self-organization of solid binding peptides on surfaces offers prospects to overcome these challenges. Here we use a graphite binding dodecapeptide, GrBP5, and record its self-organization process of the first two layers on highly oriented pyrolytic graphite surface in an aqueous solution by using frequency modulation atomic force microscopy in situ. The observations suggest that the first layer forms homogeneously, generating self-organized crystals with a lattice structure in contact with the underlying graphite. The second layer formation is mostly heterogeneous, triggered by the crystalline defects on the first layer, growing row-by-row establishing nominally diverse biomolecular self-organized structures with transient crystalline phases. The assembly is highly dependent on the peptide concentration, with the nucleation being high in high molecular concentrations, e.g., >100 μM, while the domain size is small, with an increase in the growth rate that gradually slows down. Self-assembled peptide crystals are composed of either singlets or doublets establishing P1 and P2 oblique lattices, respectively, each commensurate with the underlying graphite lattice with chiral crystal relations. This work provides insights into the surface behavior of short peptides on solids and offers quantitative guidance toward elucidating molecular mechanisms of self-assembly helping in the scientific understanding and construction of coherent bio/nano hybrid interfaces.

Identification of Exciton Complexes in Charge-Tunable Janus WSeS Monolayers
Matthew S. G. Feuer - ,
Alejandro R.-P. Montblanch - ,
Mohammed Y. Sayyad - ,
Carola M. Purser - ,
Ying Qin - ,
Evgeny M. Alexeev - ,
Alisson R. Cadore - ,
Barbara L. T. Rosa - ,
James Kerfoot - ,
Elaheh Mostaani - ,
Radosław Kalȩba - ,
Pranvera Kolari - ,
Jan Kopaczek - ,
Kenji Watanabe - ,
Takashi Taniguchi - ,
Andrea C. Ferrari - ,
Dhiren M. Kara - ,
Sefaattin Tongay *- , and
Mete Atatüre *
This publication is Open Access under the license indicated. Learn More
Janus transition-metal dichalcogenide monolayers are artificial materials, where one plane of chalcogen atoms is replaced by chalcogen atoms of a different type. Theory predicts an in-built out-of-plane electric field, giving rise to long-lived, dipolar excitons, while preserving direct-bandgap optical transitions in a uniform potential landscape. Previous Janus studies had broad photoluminescence (>18 meV) spectra obfuscating their specific excitonic origin. Here, we identify the neutral and the negatively charged inter- and intravalley exciton transitions in Janus WSeS monolayers with ∼6 meV optical line widths. We integrate Janus monolayers into vertical heterostructures, allowing doping control. Magneto-optic measurements indicate that monolayer WSeS has a direct bandgap at the K points. Our results pave the way for applications such as nanoscale sensing, which relies on resolving excitonic energy shifts, and the development of Janus-based optoelectronic devices, which requires charge-state control and integration into vertical heterostructures.

Synergistic Target of Intratumoral Microbiome and Tumor by Metronidazole–Fluorouridine Nanoparticles
Chunxiao Gao - ,
Xijun Wang - ,
Bing Yang - ,
Wei Yuan *- ,
Wei Huang - ,
Guoju Wu - , and
Jie Ma *
Clinical and experimental evidence confirmed bacterial infiltration in a variety of tumors, which is related to the progression and therapeutic effects of the tumors. Although the administration of antibiotics inhibits the growth of bacteria inside the tumor, systemic distribution of antibiotics induces an imbalance of other microbiomes in the body, which in turn leads to the development of new diseases. To address this clinical challenge, we nanonized an antibiotic in this study. Metronidazole, an antibiotic against broad anaerobes, was linked to fluorouridine to form an amphiphilic small molecule, metronidazole–fluorouridine, which further autoassembled as metronidazole–fluorouridine nanoparticles (MTI-FDU) in a hydrophilic solution. The disulfide bond in the linker cleaves in response to high levels of glutathione (GSH) in the tumor microenvironment. The synergistic antitumor effect of MTI-FDU was observed in two animal models of gut cancer with intratumoral bacteria. Analysis revealed that metronidazole delivered by nanoparticles attacked bacteria inside the tumor, while it had minimal effect on gut microbial homeostasis. Further experiments at the cellular and molecular levels disclosed that MTI-FDU shaped the tumor immune microenvironment through clearance of bacteria and bacterial products. In conclusion, we achieved a synergistic antitumor effect by a dual target of both the intratumoral microbiome and tumor cells. Antibiotic-composed nanoparticles have a clinical advantage in the treatment of tumors with bacteria infiltration, which kill pro-tumor bacteria efficiently as well as keep a balanced microbiota of the patient.

Enhanced Proliferation of Visualizable Mesenchymal Stem Cell–Platelet Hybrid Cell for Versatile Intracerebral Hemorrhage Treatment
Guanghao Wu - ,
Zhenya Liu - ,
Changwen Mu - ,
Da Song - ,
Jiaxin Wang - ,
Xiangxi Meng - ,
Ziyuan Li - ,
Hong Qing - ,
Yuping Dong - ,
Hai-Yan Xie - , and
Dai-Wen Pang
The intrinsic features and functions of platelets and mesenchymal stem cells (MSCs) indicate their great potential in the treatment of intracerebral hemorrhage (ICH). However, neither of them can completely overcome ICH because of the stealth process and the complex pathology of ICH. Here, we fabricate hybrid cells for versatile and highly efficient ICH therapy by fusing MSCs with platelets and loading with lysophosphatidic acid-modified PbS quantum dots (LPA-QDs). The obtained LPA-QDs@FCs (FCs = fusion cells) not only inherit the capabilities of both platelets and MSCs but also exhibit clearly enhanced proliferation activated by LPA. After systemic administration, many proliferating LPA-QDs@FCs rapidly accumulate in ICH areas for responding to the vascular damage and inflammation and then efficiently prevent both the primary and secondary injuries of ICH but with no obvious side effects. Moreover, the treatment process can be tracked by near-infrared II fluorescence imaging with highly spatiotemporal resolution, providing a promising solution for ICH therapy.

Tailoring On-Surface Molecular Reactions and Assembly through Hydrogen-Modified Synthesis: From Triarylamine Monomer to 2D Covalent Organic Framework
Zachery A. Enderson - ,
Harshavardhan Murali - ,
Raghunath R. Dasari - ,
Qingqing Dai - ,
Hong Li - ,
Timothy C. Parker - ,
Jean-Luc Brédas - ,
Seth R. Marder - , and
Phillip N. First *
This publication is Open Access under the license indicated. Learn More
Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sources─relying only on backfilled hydrogen gas and ion gauge filaments─and can dramatically influence the Ullmann-like on-surface reaction used for synthesizing two-dimensional covalent organic frameworks (2D COFs). Using tribromo dimethylmethylene-bridged triphenylamine ((Br3)DTPA) as monomer precursors, we find that atomic hydrogen (H•) blocks aryl–aryl bond formation to such an extent that we suspect this reaction may be a factor in limiting the ultimate size of 2D COFs created through on-surface synthesis. Conversely, we show that control of the relative monomer and hydrogen fluxes can be used to produce large self-assembled islands of monomers, dimers, or macrocycle hexamers, which are of interest in their own right. On-surface synthesis of oligomers, from a single precursor, circumvents potential challenges with their protracted wet-chemical synthesis and with multiple deposition sources. Using scanning tunneling microscopy and spectroscopy (STM/STS), we show that changes in the electronic states through this oligomer sequence provide an insightful view of the 2D COF (synthesized in the absence of atomic hydrogen) as the end point in an evolution of electronic structures from the monomer.

Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons
Hanan Herzig Sheinfux - ,
Minwoo Jung - ,
Lorenzo Orsini - ,
Matteo Ceccanti - ,
Aditya Mahalanabish - ,
Daniel Martinez-Cercós - ,
Iacopo Torre - ,
David Barcons Ruiz - ,
Eli Janzen - ,
James H. Edgar - ,
Valerio Pruneri - ,
Gennady Shvets - , and
Frank H. L. Koppens *
Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.

Double-Floating-Gate van der Waals Transistor for High-Precision Synaptic Operations
Hoyeon Cho - ,
Donghyun Lee - ,
Kyungmin Ko - ,
Der-Yuh Lin - ,
Huimin Lee - ,
Sangwoo Park - ,
Beomsung Park - ,
Byung Chul Jang - ,
Dong-Hyeok Lim *- , and
Joonki Suh *
Two-dimensional materials and their heterostructures have thus far been identified as leading candidates for nanoelectronics owing to the near-atom thickness, superior electrostatic control, and adjustable device architecture. These characteristics are indeed advantageous for neuro-inspired computing hardware where precise programming is strongly required. However, its successful demonstration fully utilizing all of the given benefits remains to be further developed. Herein, we present van der Waals (vdW) integrated synaptic transistors with multistacked floating gates, which are reconfigured upon surface oxidation. When compared with a conventional device structure with a single floating gate, our double-floating-gate (DFG) device exhibits better nonvolatile memory performance, including a large memory window (>100 V), high on–off current ratio (∼107), relatively long retention time (>5000 s), and satisfactory cyclic endurance (>500 cycles), all of which can be attributed to its increased charge-storage capacity and spatial redistribution. This facilitates highly effective modulation of trapped charge density with a large dynamic range. Consequently, the DFG transistor exhibits an improved weight update profile in long-term potentiation/depression synaptic behavior for nearly ideal classification accuracies of up to 96.12% (MNIST) and 81.68% (Fashion-MNIST). Our work adds a powerful option to vdW-bonded device structures for highly efficient neuromorphic computing.

Neutrophil-like Biomimic AIE Nanoparticles with High-Efficiency Inflammatory Cytokine Targeting Enable Precise Photothermal Therapy and Alleviation of Inflammation
Wentao Wang - ,
Yumeng Gao - ,
Ming Zhang *- ,
Yuanyuan Li *- , and
Ben Zhong Tang *
Although photothermal therapy (PTT) has thrived as a promising treatment for drug-resistant bacterial infections by avoiding the abuse of antibiotics, the remaining challenges that limit the treatment efficiency are the poor targeting properties of infected lesions and low penetration to the cell membrane of Gram-negative bacteria. Herein, we developed a biomimetic neutrophil-like aggregation-induced emission (AIE) nanorobot (CM@AIE NPs) for precise inflammatory site homing and efficient PTT effects. Due to their surface-loaded neutrophil membranes, CM@AIE NPs can mimic the source cell and thus interact with immunomodulatory molecules that would otherwise target endogenous neutrophils. Coupled with the secondary near-infrared region absorption and excellent photothermal properties of AIE luminogens (AIEgens), precise localization, and treatment in inflammatory sites can be achieved, thereby minimizing damage to surrounding normal tissues. Moreover, CM@AIE NP-mediated PTT was stimulated in vivo by a 980 nm laser irradiation, which contributed to the extent of the therapeutic depth and limited the damage to skin tissues. The good biocompatibility and excellent in vitro and in vivo antibacterial effects prove that CM@AIE NPs can provide a strategy for broad-spectrum antibacterial applications.

Oxygen-Bridged Vanadium Single-Atom Dimer Catalysts Promoting High Faradaic Efficiency of Ammonia Electrosynthesis
Lingling Wang - ,
Yang Liu - ,
Hongdan Wang - ,
Taehun Yang - ,
Yongguang Luo - ,
Seungeun Lee - ,
Min Gyu Kim - ,
Ta Thi Thuy Nga - ,
Chung-Li Dong - , and
Hyoyoung Lee *
Single-atom catalysts have already been widely investigated for the nitrogen reduction reaction (NRR). However, the simplicity of a single atom as an active center encounters the challenge of modulating the multiple reaction intermediates during the NRR process. Moving toward the single-atom-dimer (SAD) structures can not only buffer the multiple reaction intermediates but also provide a strategy to modify the electronic structure and environment of the catalysts. Here, a structure of a vanadium SAD (V-O-V) catalyst on N-doped carbon (O-V2-NC) is proposed for the electrochemical nitrogen reduction reaction, in which the vanadium dimer is coordinated with nitrogen and simultaneously bridged by one oxygen. The oxygen-bridged metal atom dimer that has more electron deficiency is perceived to be the active center for nitrogen reduction. A loop evolution of the intermediate structure was found during the theoretical process simulated by density functional theory (DFT) calculation. The active center V-O-V breaks down to V-O and V during the protonation process and regenerates to the original V-O-V structure after releasing all the nitrogen species. Thus, the O-V2-NC structure presents excellent activity toward the electrochemical NRR, achieving an outstanding faradaic efficiency (77%) along with the yield of 9.97 μg h–1 mg–1 at 0 V (vs RHE) and comparably high ammonia yield (26 μg h–1 mg–1) with the FE of 4.6% at −0.4 V (vs RHE). This report synthesizes and proves the peculiar V-O-V dimer structure experimentally, which also contributes to the library of SAD catalysts with superior performance.

Assessing the Fate of Superparamagnetic Iron Oxide Nanoparticles Carrying Usnic Acid as Chemical Cargo on the Soil Microbial Community
Montcharles S. Pontes *- ,
Jaqueline Silva Santos - ,
José Luiz da Silva - ,
Thaiz B. A. R. Miguel - ,
Emilio Castro Miguel - ,
Antonio G. Souza Filho - ,
Flavio Garcia - ,
Sandro Marcio Lima - ,
Luís Humberto da Cunha Andrade - ,
Gilberto J. Arruda - ,
Renato Grillo - ,
Anderson R. L. Caires - , and
Etenaldo Felipe Santiago *
In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light–dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.

Chirality Analysis of Complex Microparticles using Deep Learning on Realistic Sets of Microscopy Images
Anastasia Visheratina - ,
Alexander Visheratin - ,
Prashant Kumar - ,
Michael Veksler - , and
Nicholas A. Kotov *
Nanoscale chirality is an actively growing research field spurred by the giant chiroptical activity, enantioselective biological activity, and asymmetric catalytic activity of chiral nanostructures. Compared to chiral molecules, the handedness of chiral nano- and microstructures can be directly established via electron microscopy, which can be utilized for the automatic analysis of chiral nanostructures and prediction of their properties. However, chirality in complex materials may have multiple geometric forms and scales. Computational identification of chirality from electron microscopy images rather than optical measurements is convenient but is fundamentally challenging, too, because (1) image features differentiating left- and right-handed particles can be ambiguous and (2) three-dimensional structure essential for chirality is ‘flattened’ into two-dimensional projections. Here, we show that deep learning algorithms can identify twisted bowtie-shaped microparticles with nearly 100% accuracy and classify them as left- and right-handed with as high as 99% accuracy. Importantly, such accuracy was achieved with as few as 30 original electron microscopy images of bowties. Furthermore, after training on bowtie particles with complex nanostructured features, the model can recognize other chiral shapes with different geometries without retraining for their specific chiral geometry with 93% accuracy, indicating the true learning abilities of the employed neural networks. These findings indicate that our algorithm trained on a practically feasible set of experimental data enables automated analysis of microscopy data for the accelerated discovery of chiral particles and their complex systems for multiple applications.

Confined Cascade Metabolic Reprogramming Nanoreactor for Targeted Alcohol Detoxification and Alcoholic Liver Injury Management
Xudong Geng - ,
Xuancheng Du - ,
Weijie Wang - ,
Chengmei Zhang - ,
Xiangdong Liu - ,
Yuanyuan Qu - ,
Mingwen Zhao - ,
Weifeng Li - ,
Mingzhen Zhang - ,
Kangsheng Tu *- , and
Yong-Qiang Li *
Alcoholic liver injury (ALI) is the leading cause of serious liver disease, whereas current treatments are mostly supportive and unable to metabolize alcohol directly. Here we report a metabolic reprogramming strategy for targeted alcohol detoxification and ALI management based on a confined cascade nanoreactor. The nanoreactor (named AA@mMOF) is designed by assembling natural enzymes of alcohol oxidase (AOx) and aldehyde dehydrogenase (ALDH) in the cavity of a mesoporous metal organic framework (mMOF) nanozyme with intrinsic catalase (CAT)-like activity. By conducting confined AOx/CAT/ALDH cascade reactions, AA@mMOF enables self-accelerated alcohol degradation (>0.5 mg·mL–1·h–1) with negligible aldehyde diffusion and accumulation, reprogramming alcohol metabolism and allowing high-efficiency detoxification. Administered to high-dose alcohol-intoxicated mice, AA@mMOF shows surprising liver targeting and accumulation performance and dramatically reduces blood alcohol concentration and rapidly reverses unconsciousness and acute liver injury to afford targeted alcoholism treatment. Moreover, AA@mMOF dramatically alleviates fat accumulation and oxidative stress in the liver of chronic alcoholism mice to block and reverse the progression of ALI. By conducting confined AOx/CAT/ALDH cascade reactions for high-efficiency alcohol metabolism reprogramming, AA@mMOF nanoreactor offers a powerful modality for targeted alcohol detoxification and ALI management. The proposed confined cascade metabolic reprogramming strategy provides a paradigm shift for the treatment of metabolic diseases.

Single-Atomic-Layer Stanene on Ferromagnetic Co Nanoislands with Topological Band Structures
Chia-Ju Chen - ,
Yung-Chun Chao - ,
Yen-Hui Lin - ,
Yi-Hao Zhuang - ,
Yen-Ming Lai - ,
Shih-Tang Huang - ,
Allan H. MacDonald - ,
Chih-Kang Shih - ,
Bo-Yao Wang *- ,
Jung-Jung Su *- , and
Pin-Jui Hsu *
Introducing magnetism to two-dimensional topological insulators is a central issue in the pursuit of magnetic topological materials in low dimensionality. By means of low-temperature growth at 80 K, we succeeded in fabricating a monolayer stanene on Co/Cu(111) and resolving ferromagnetic spin contrast by field-dependent spin-polarized scanning tunneling microscopy (SP-STM). Increases of both remanence to saturation magnetization ratio (Mr/Ms) and coercive field (Hc) due to an enhanced perpendicular magnetic anisotropy (PMA) are further identified by out-of-plane magneto-optical Kerr effect (MOKE). In addition to ultraflat stanene fully relaxed on bilayer Co/Cu(111) from density functional theory (DFT), characteristic topological properties including an in-plane s–p band inversion and a spin–orbit coupling (SOC) induced gap about 0.25 eV at the Γ̅ point have also been verified in the Sn-projected band structure. Interfacial coupling of single-atomic-layer stanene with ferromagnetic Co biatomic layers allows topological band features to coexist with ferromagnetism, facilitating a conceptual design of atomically thin magnetic topological heterostructures.

Silicon Waveguide-Integrated Carbon Nanotube Photodetector with Low Dark Current and 48 GHz Bandwidth
Hongyan Zhao - ,
Leijing Yang *- ,
Weifeng Wu - ,
Xiang Cai - ,
Fan Yang - ,
Haojin Xiu - ,
Yongjun Wang - ,
Qi Zhang - ,
Xiangjun Xin - ,
Fan Zhang - ,
Lian-Mao Peng - , and
Sheng Wang *
Low-dimensional materials with excellent optoelectronic properties and complementary metal-oxide-semiconductor (CMOS) process compatibility have the potential to construct high-performance photodetectors used in a cost-efficient monolithic or hybrid integrated optical communication system. Carbon nanotubes (CNTs) have attracted a lot of attention due to special geometric structure and broad band response, high optical absorption coefficient, ps-level intrinsic light response, high carrier mobility and wafer-scaled production process. Here, we demonstrated a high-performance waveguide-integrated CNT photodetector with asymmetric palladium (Pd) and hafnium (Hf) contact electrodes. The ideal photodetector structure was realized via comparing with simulation and experimental results, where the optimized device achieved a high 3 dB bandwidth ∼48 GHz at 0 V, as well as a responsivity ∼73.62 mA/W and dark current ∼0.157 μA at −2 V bias voltage. This waveguide-integrated CNT photodetector with low dark current and high bandwidth is helpful for next-generation optical communication and high-speed optical interconnects.

Nattokinase-Mediated Regulation of Tumor Physical Microenvironment to Enhance Chemotherapy, Radiotherapy, and CAR-T Therapy of Solid Tumor
Yanxiang Zhang - ,
Pei Pei - ,
Hailin Zhou - ,
Yuyuan Xie - ,
Sai Yang - ,
Wenhao Shen - ,
Lin Hu - ,
Yujuan Zhang *- ,
Teng Liu *- , and
Kai Yang *
The therapy of solid tumors is always hampered by the intrinsic tumor physical microenvironment (TPME) featured with compact and rigid extracellular matrix (ECM) microstructures. Herein, we introduce nattokinase (NKase), a thrombolytic healthcare drug, to comprehensively regulate the TPME for versatile enhancement of various therapy modalities. Intratumoral injection of NKase not only degrades the major ECM component fibronectin but also inhibits cancer-associated fibroblasts (CAFs) in generating fibrosis, resulting in decreased tumor stiffness, enhanced perfusion, and hypoxia alleviation. The NKase-mediated regulation of the TPME significantly promotes the tumoral accumulation of therapeutic agents, leading to efficient chemotherapy without inducing side effects. Additionally, the enhancement of tumor radiotherapy based on radiosensitizers was also achieved by the pretreatment of intratumorally injected NKase, which could be ascribed to the elevated oxygen saturation level in NKase-treated tumors. Moreover, a xenografted human breast MDB-MA-231 tumor model is established to evaluate the influence of NKase on chimeric antigen receptor (CAR)-T cell therapy, illustrating that the pretreatment of NKase could boost the infiltration of CAR-T cells into tumors and thus be a benefit for tumor inhibition. These findings demonstrate the great promise of the NKase-regulated TPME as a translational strategy for universal enhancement of therapeutic efficacy in solid tumors by various treatments.

Valley-Polarized Interlayer Excitons in 2D Chalcogenide–Halide Perovskite–van der Waals Heterostructures
Simrjit Singh - ,
Weiyi Gong - ,
Christopher E. Stevens - ,
Jin Hou - ,
Aditya Singh - ,
Huiqin Zhang - ,
Surendra B. Anantharaman - ,
Aditya D. Mohite - ,
Joshua R. Hendrickson - ,
Qimin Yan - , and
Deep Jariwala *
Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden–Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.

Chemoimmunological Cascade Cancer Therapy Using Fluorine Assembly Nanomedicine
Qingyan Zhang - ,
Pengkai Wu - ,
Jicheng Wu - ,
Hao Shou - ,
Xinliang Ming - ,
Shuqi Wang - , and
Ben Wang *
Classical chemotherapeutic drugs may cause immunogenic cell death (ICD), followed by activating CD8+ T cells to promote cell-mediated antitumor immune responses. However, CD8+ T cells become exhausted due to tumor antigens’ continuous stimulation, creating a major obstacle to effectively suppressing tumor growth and metastasis. Here, we develop an approach of chemo-gene combinational nanomedicine to bridge and reprogram chemotherapy and immunotherapy. The dually loaded nanomedicine induces ICD in tumor cells through doxorubicin and reverses the antitumor effects of exhausted CD8+ T cells through the small interfering RNA. The synergistic chemo-gene and fluorine assembly nanomedicine enriched in reactive oxygen species and acid-sensitive bonds results in enhanced cancer immunotherapy to inhibit tumor growth and the lung metastasis of breast cancer in a mouse model of breast cancer and melanoma. This study provides an efficient strategy and insights into chemoimmunological cascade therapy for combating malignant metastatic tumors.

Single-Atom Nanocatalytic Therapy for Suppression of Neuroinflammation by Inducing Autophagy of Abnormal Mitochondria
Bowen Li - ,
Yang Bai - ,
Chan Yion - ,
Hua Wang - ,
Xin Su - ,
Guoqing Feng - ,
Mingming Guo - ,
Wenchang Peng - ,
Boxi Shen - , and
Bin Zheng *
Catalysts have achieved efficacy in scavenging reactive oxygen species (ROS) to eliminate neuroinflammation, but it ignores the essential fact of blocking the source of ROS regeneration. Here, we report the single-atom catalysts (SACs) Pt/CeO2, which can effectively catalyze the breakdown of existing ROS and induce mitochondrial membrane potential (Δψm) depolarization by interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle pathway, indirectly triggering the self-clearance of dysfunctional mitochondria and thus eradicating the source of ROS generation. In a therapeutic model of Parkinson’s disease (PD), Pt/CeO2 wrapped by neutrophil-like (HL-60) cell membranes and modified by rabies virus glycoprotein (RVG29) effectively crosses the blood–brain barrier (BBB), enters dopaminergic neurons entering the neuroinflammatory region breaking down existing ROS and inducing mitophagy by electrostatic adsorption targeting mitochondria to prevent ROS regeneration after catalyst discharge. This strategy of efficiently eliminating ROS at the lesion and fundamentally blocking the source of ROS production can address both symptoms and root causes and provides a mechanism of explanation and action target for the treatment of inflammation-related diseases.

Intraband Transition of HgTe Nanocrystals for Long-Wave Infrared Detection at 12 μm
Haozhi Zhang - ,
John C. Peterson - , and
Philippe Guyot-Sionnest *
The synthesis of n-doped HgTe colloidal quantum dots was optimized to produce samples with a 1Se–1Pe intraband transition in the long-wave infrared (8–12 μm). The spin–orbit splitting of 1Pe states places the 1Se–1Pe1/2 transition around 10 μm. The narrow line width of 130 cm–1 at 300 K is limited by the size distribution. This narrowing leads to an absorption coefficient about 5 times stronger than is possible with the HgTe CQD interband transition at similar energies. From 300 to 80 K, the intraband transition blueshifts by 90 cm–1, while the interband transition redshifts by 350 cm–1. These shifts are assigned to the temperature dependence of the band structure. With ∼2 electrons/dot doping at 80 K, a photoconductive film of 80 nm thickness on a quarter wave reflector substrate showed a detectivity (D*) of ∼107 Jones at 500 Hz in the 8–12 μm range.

Moving beyond Ti2C3Tx MXene to Pt-Decorated TiO2@TiC Core–Shell via Pulsed Laser in Reshaping Modification for Accelerating Hydrogen Evolution Kinetics
Chae Eun Park - ,
Gyoung Hwa Jeong - ,
Jayaraman Theerthagiri - ,
Hyeyeon Lee - , and
Myong Yong Choi *
Phase engineering of nanocatalysts on specific facets is critical not only for enhancing catalytic activity but also for intensely understanding the impact of facet-based phase engineering on electrocatalytic reactions. In this study, we successfully reshaped a two-dimensional (2D) MXene (Ti3C2Tx) obtained by etching Ti3AlC2 MAX via a pulsed laser irradiation in liquid (PLIL) process. We produced a TiO2@TiC core–shell structure in spheres with sizes of 200–350 nm, and then ∼2 nm ultrasmall Pt NPs were decorated on the surface of the TiO2@TiC core–shell using the single-step PLIL method. These advances allow for a significant increase in electrocatalytic hydrogen evolution reaction (HER) activity under visible light illumination. The effect of optimal Pt loading on PLIL time was identified, and the resulting Pt/TiO2@TiC/Pt-5 min sample demonstrated outstanding electrochemical and photoelectrochemical performance. The photoelectrochemical HER activity over Pt/TiO2@TiC/Pt-5 min catalyst exhibits a low overpotential of 48 mV at 10 mA/cm2 and an ultralow Tafel slope of 54.03 mV/dec with excellent stability of over 50 h, which is hydrogen production activity even superior to that of the commercial Pt/C catalysts (55 mV, 62.45 mV/dec). This investigation not only serves as a potential for laser-dependent phase engineering but also provides a reliable strategy for the rational design and fabrication of highly effective nanocatalysts.

Stretchable Low-Impedance Conductor with Ag–Au–Pt Core–Shell–Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device
Sung-Hyuk Sunwoo - ,
Sang Ihn Han - ,
Dongjun Jung - ,
Minseong Kim - ,
Seonghyeon Nam - ,
Hyunjin Lee - ,
Suji Choi - ,
Hyejeong Kang - ,
Ye Seul Cho - ,
Da-Hae Yeom - ,
Myung-Jin Cha - ,
Seunghwan Lee - ,
Seung-Pyo Lee *- ,
Taeghwan Hyeon *- , and
Dae-Hyeong Kim *
Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, high stretchability, low cytotoxicity, and low impedance. Here, we present a material strategy for the stretchable conductive nanocomposite, particularly emphasizing low impedance, by combining silver–gold–platinum core–shell–shell nanowires and homogeneously dispersed in situ synthesized platinum nanoparticles (Pt NPs). The highly embossed structure of the outermost Pt shell, together with the intrinsic electrical property of Pt, contributes to minimizing the impedance. The gold–platinum double-layer sheath prevents leaching of cytotoxic Ag ions, thus improving biocompatibility. Homogeneously dispersed Pt NPs, synthesized in situ during fabrication of the nanocomposite, simultaneously enhance conductivity, reduce impedance, and improve stretchability by supporting the percolation network formation. This intrinsically stretchable nanocomposite conductor can be applied to wearable and implantable bioelectronics for recording biosignals and delivering electrical stimulations in vivo.

Extracellular Vesicle ITGAM and ITGB2 Mediate Severe Acute Pancreatitis-Related Acute Lung Injury
Qian Hu - ,
Shu Zhang - ,
Yue Yang - ,
Juan Li - ,
Hongxin Kang - ,
Wenfu Tang - ,
Christopher J. Lyon - , and
Meihua Wan *
This publication is Open Access under the license indicated. Learn More
Integrins expressed on extracellular vesicles (EVs) secreted by various cancers are reported to mediate the organotropism of these EVs. Our previous experiment found that pancreatic tissue of mice with severe cases of acute pancreatitis (SAP) overexpresses several integrins and that serum EVs of these mice (SAP-EVs) can mediate acute lung injury (ALI). It is unclear if SAP-EV express integrins that can promote their accumulation in the lung to promote ALI. Here, we report that SAP-EV overexpress several integrins and that preincubation of SAP-EV with the integrin antagonist peptide HYD-1 markedly attenuates their pulmonary inflammation and disrupt the pulmonary microvascular endothelial cell (PMVEC) barrier. Further, we report that injecting SAP mice with EVs engineered to overexpress two of these integrins (ITGAM and ITGB2) can attenuate the pulmonary accumulation of pancreas-derived EVs and similarly decrease pulmonary inflammation and disruption of the endothelial cell barrier. Based on these findings, we propose that pancreatic EVs can mediate ALI in SAP patients and that this injury response could be attenuated by administering EVs that overexpress ITGAM and/or ITGB2, which is worthy of further study due to the lack of effective therapies for SAP-induced ALI.

Pressure-Controlled Layer-by-Layer to Continuous Oxidation of ZrS2(001) Surface
Liqiu Yang *- ,
Rafael Jaramillo - ,
Rajiv K. Kalia - ,
Aiichiro Nakano *- , and
Priya Vashishta
Understanding oxidation mechanisms of layered semiconducting transition-metal dichalcogenides (TMDC) is important not only for controlling native oxide formation but also for synthesis of oxide and oxysulfide products. Here, reactive molecular dynamics simulations show that oxygen partial pressure controls not only the ZrS2 oxidation rate but also the oxide morphology and quality. We find a transition from layer-by-layer oxidation to amorphous-oxide-mediated continuous oxidation as the oxidation progresses, where different pressures selectively expose different oxidation stages within a given time window. While the kinetics of the fast continuous oxidation stage is well described by the conventional Deal–Grove model, the layer-by-layer oxidation stage is dictated by reactive bond-switching mechanisms. This work provides atomistic details and a potential foundation for rational pressure-controlled oxidation of TMDC materials.

Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation
Hongwei Fan - ,
Haoran Wang - ,
Manhua Peng - ,
Hong Meng - ,
Alexander Mundstock - ,
Alexander Knebel - , and
Jürgen Caro *
This publication is Open Access under the license indicated. Learn More
Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.

Nanostructured Hybrid BioBots for Beer Brewing
Roberto Maria-Hormigos - ,
Carmen C. Mayorga-Martinez - ,
Tomáš Kinčl - , and
Martin Pumera *
This publication is Open Access under the license indicated. Learn More
The brewing industry will amass a revenue above 500 billion euros in 2022, and the market is expected to grow annually. This industrial process is based on a slow sugar fermentation by yeast (commonly Saccharomyces cerevisiae). Herein, we encapsulate yeast cells into a biocompatible alginate (ALG) polymer along Fe3O4 nanoparticles to produce magneto/catalytic nanostructured ALG@yeast-Fe3O4 BioBots. Yeast encapsulated in these biocompatible BioBots keeps their biological activity (growth, reproduction, and catalytic fermentation) essential for brewing. Catalytic fermentation of sugars into CO2 gas caused a continuous oscillatory motion of the BioBots in the solution. This BioBot motion is employed to enhance the beer fermentation process compared to static-free yeast cells. When the process is finished, magnetic actuation of BioBots is employed for their retrieval from the beer samples, which avoids the need of additional filtration steps. All in all, we demonstrate how an industrial process such as beer production can be benefited by miniaturized autonomous magneto/catalytic BioBots.

Realizing a Superconducting Square-Lattice Bismuth Monolayer
Eunseok Oh - ,
Kyung-Hwan Jin - , and
Han Woong Yeom *
Interplay of crystal symmetry, strong spin–orbit coupling (SOC), and many-body interactions in low-dimensional materials provides a fertile ground for the discovery of unconventional electronic and magnetic properties and versatile functionalities. Two-dimensional (2D) allotropes of group 15 elements are appealing due to their structures and controllability over symmetries and topology under strong SOC. Here, we report the heteroepitaxial growth of a proximity-induced superconducting 2D square-lattice bismuth monolayer on superconducting Pb films. The square lattice of monolayer bismuth films in a C4 symmetry together with a stripey moiré structure is clearly resolved by our scanning tunneling microscopy, and its atomic structure is revealed by density functional theory (DFT) calculations. A Rashba-type spin-split Dirac band is predicted by DFT calculations to exist at the Fermi level and becomes superconducting through the proximity effect from the Pb substrate. We suggest the possibility of a topological superconducting state in this system with magnetic dopants/field. This work introduces an intriguing material platform with 2D Dirac bands, strong SOC, topological superconductivity, and the moiré superstructure.

Block Copolymer Enabled Synthesis and Assembly of Chiral Metal Oxide Nanoparticle
Minju Kim - ,
Jiweon Kim - ,
Hyun Jeong Lee - ,
Hyeohn Kim - ,
Ki Tae Nam *- , and
Dong Ha Kim *
Chiral metal oxide nanostructures have received tremendous attention in nanotechnological applications owing to their intriguing chiroptical and magnetic properties. Current synthetic methods mostly rely on the use of amino acids or peptides as chiral inducers. Here, we report a general approach to fabricate chiral metal oxide nanostructures with tunable magneto-chiral effects, using block copolymer (BCP) inverse micelle and R/S-mandelic acid (MA). Diverse chiral metal oxide nanostructures are prepared by the selective incorporation of precursors within micellar cores followed by the oxidation process, exhibiting intense chiroptical properties with a g-factor up to 7.0 × 10–3 in the visible–NIR range for the Cr2O3 nanoparticle multilayer. The BCP inverse micelle is found to inhibit the racemization of MA, allowing MA to act as a chiral dopant that imparts chirality to nanostructures via hierarchical chirality transfer. Notably, for paramagnetic nanostructures, magneto-chiroptical modulation is realized by regulating the direction of the external magnetic field. This BCP-driven approach can be extended to the mass production of chiral nanostructures with tunable architectures and optical activities, which may provide insights into the development of chiroptical functional materials.

Intelligent Colorimetric Indicators for Quality Monitoring and Multilevel Anticounterfeiting with Kinetics-Tunable Fluorescence
Guodong Zhao - ,
Yao Kou - ,
Nan Song - ,
Xiaohe Wei - ,
Xiaoyong Zhai - ,
Pengfei Feng - ,
Feng Wang *- ,
Chun-Hua Yan - , and
Yu Tang *
The spoilage and forgery of perishable products such as food, drugs, and vaccines cause serious health hazards and economic loss every year. Developing highly efficient and convenient time–temperature indicators (TTIs) to realize quality monitoring and anticounterfeiting simultaneously is urgent but remains a challenge. To this end, a kind of colorimetric fluorescent TTI, based on CsPbBr3@SiO2 nanoparticles with tunable quenching kinetics, is developed. The kinetics rate of the CsPbBr3-based TTIs is easily regulated by adjusting temperature, concentration of the nanoparticles, and addition of salts, stemming from the cation exchange effect, common-ion effect, and structural damage by water. Typically, when combined with europium complexes, the developed TTIs show an irreversible dynamic change in fluorescent colors from green to red upon increasing temperature and time. Furthermore, a locking encryption system with multiple logics is also realized by combining TTIs with different kinetics. The correct information only appears at specific ranges of time and temperature under UV light and is irreversibly self-erased afterward. The simple and low-cost composition and the ingenious design of kinetics-tunable fluorescence in this work stimulate more insights and inspiration toward intelligent TTIs, especially for high-security anticounterfeiting and quality monitoring, which is really conducive to ensuring food and medicine safety.

High External Quantum Efficiency Light-Emitting Diodes Enabled by Advanced Heterostructures of Type-II Nanoplatelets
Emek G. Durmusoglu - ,
Sujuan Hu - ,
Pedro Ludwig Hernandez-Martinez - ,
Merve Izmir - ,
Farzan Shabani - ,
Min Guo - ,
Huayu Gao - ,
Furkan Isik - ,
Savas Delikanli - ,
Vijay Kumar Sharma - ,
Baiquan Liu *- , and
Hilmi Volkan Demir *
This publication is Open Access under the license indicated. Learn More
Colloidal quantum wells (CQWs), also known as nanoplatelets (NPLs), are exciting material systems for numerous photonic applications, including lasers and light-emitting diodes (LEDs). Although many successful type-I NPL-LEDs with high device performance have been demonstrated, type-II NPLs are not fully exploited for LED applications, even with alloyed type-II NPLs with enhanced optical properties. Here, we present the development of CdSe/CdTe/CdSe core/crown/crown (multi-crowned) type-II NPLs and systematic investigation of their optical properties, including their comparison with the traditional core/crown counterparts. Unlike traditional type-II NPLs such as CdSe/CdTe, CdTe/CdSe, and CdSe/CdSexTe1–x core/crown heterostructures, here the proposed advanced heterostructure reaps the benefits of having two type-II transition channels, resulting in a high quantum yield (QY) of 83% and a long fluorescence lifetime of 73.3 ns. These type-II transitions were confirmed experimentally by optical measurements and theoretically using electron and hole wave function modeling. Computational study shows that the multi-crowned NPLs provide a better-distributed hole wave function along the CdTe crown, while the electron wave function is delocalized in the CdSe core and CdSe crown layers. As a proof-of-concept demonstration, NPL-LEDs based on these multi-crowned NPLs were designed and fabricated with a record high external quantum efficiency (EQE) of 7.83% among type-II NPL-LEDs. These findings are expected to induce advanced designs of NPL heterostructures to reach a fascinating level of performance, especially in LEDs and lasers.

Targeting Endogenous Reactive Oxygen Species Removal and Regulating Regenerative Microenvironment at Annulus Fibrosus Defects Promote Tissue Repair
Feng Han - ,
Zhengdong Tu - ,
Zhuang Zhu - ,
Dachuan Liu - ,
Qingchen Meng - ,
Qifan Yu - ,
Ying Wang - ,
Jianquan Chen - ,
Tao Liu *- ,
Fengxuan Han *- , and
Bin Li *
The excessive reactive oxygen species (ROS) level, inflammation, and weak tissue regeneration ability after annulus fibrosus (AF) injury constitute an unfavorable microenvironment for AF repair. AF integrity is crucial for preventing disc herniation after discectomy; however, there is no effective way to repair the AF. Herein, a composite hydrogel integrating properties of antioxidant, anti-inflammation, and recruitment of AF cells is developed through adding mesoporous silica nanoparticles modified by ceria and transforming growth factor β3 (TGF-β3) to the hydrogels. The nanoparticle loaded gelatin methacrylate/hyaluronic acid methacrylate composite hydrogels eliminate ROS and induce anti-inflammatory M2 type macrophage polarization. The released TGF-β3 not only plays a role in recruiting AF cells but is also responsible for promoting extracellular matrix secretion. The composite hydrogels can be solidified in situ in the defect area to effectively repair AF in rats. The strategies targeting endogenous ROS removal and improving the regenerative microenvironment by the nanoparticle-loaded composite hydrogels have potential applications in AF repair and intervertebral disc herniation prevention.

The Fractal Network Structure of Silk Fibroin Molecules and Its Effect on Spinning of Silkworm Silk
Shuo Yang - ,
Chenxi Zhao - ,
Yunhao Yang - ,
Jing Ren - , and
Shengjie Ling *
Animal silk is usually considered to exist as a solid fiber with a highly ordered structure, formed by the hierarchical assembly starting from a single silk fibroin (SF) chain. However, this study showed that silk protein molecules existed in the form of a fractal network structure in aqueous solution, rather than as a single chain. This type of network was relatively rigid with low fractal dimension. Finite element analysis revealed that this network structure significantly helped in the stable storage of SF prior to the spinning process and in the rapid formation of a β-sheeted nanocrystalline and nematic texture during spinning. Further, the strong but brittle mechanical properties of Bombyx mori silk could also be well-explained through the fractal network model of silk fibroin. The strength was mainly derived from the dual network structure, consisting of nodes and β-sheet cross-links, whereas the brittleness could be attributed to the rigidity of the SF chains between these nodes and cross-links. In summary, this study presents insights from network topology for understanding the spinning process of natural silk and the structure–property relationship in silk materials.

Insights into the Synthesis Mechanisms of Ag-Cu3P-GaP Multicomponent Nanoparticles
Michael S. Seifner *- ,
Tianyi Hu - ,
Markus Snellman - ,
Daniel Jacobsson - ,
Knut Deppert - ,
Maria E. Messing - , and
Kimberly A. Dick *
This publication is Open Access under the license indicated. Learn More
Metal–semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets’ orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal–organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.

Rydberg Excitons and Trions in Monolayer MoTe2
Souvik Biswas - ,
Aurélie Champagne - ,
Jonah B. Haber - ,
Supavit Pokawanvit - ,
Joeson Wong - ,
Hamidreza Akbari - ,
Sergiy Krylyuk - ,
Kenji Watanabe - ,
Takashi Taniguchi - ,
Albert V. Davydov - ,
Zakaria Y. Al Balushi - ,
Diana Y. Qiu - ,
Felipe H. da Jornada - ,
Jeffrey B. Neaton - , and
Harry A. Atwater *
Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances, which serve as a microscopic, noninvasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire Rydberg series of resonances. Excitons have been extensively studied in most TMDCs (MoS2, MoSe2, WS2, and WSe2), but detailed exploration of excitonic phenomena has been lacking in the important TMDC material molybdenum ditelluride (MoTe2). Here, we report an experimental investigation of excitonic luminescence properties of monolayer MoTe2 to understand the excitonic Rydberg series, up to 3s. We report a significant modification of emission energies with temperature (4 to 300 K), thereby quantifying the exciton–phonon coupling. Furthermore, we observe a strongly gate-tunable exciton–trion interplay for all the Rydberg states governed mainly by free-carrier screening, Pauli blocking, and band gap renormalization in agreement with the results of first-principles GW plus Bethe–Salpeter equation approach calculations. Our results help bring monolayer MoTe2 closer to its potential applications in near-infrared optoelectronics and photonic devices.

Reconfigurable Physical Reservoir in GaN/α-In2Se3 HEMTs Enabled by Out-of-Plane Local Polarization of Ferroelectric 2D Layer
Jeong Yong Yang - ,
Minseong Park - ,
Min Jae Yeom - ,
Yongmin Baek - ,
Seok Chan Yoon - ,
Yeong Je Jeong - ,
Seung Yoon Oh - ,
Kyusang Lee *- , and
Geonwook Yoo *
Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal–oxide–semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-In2Se3 ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-In2Se3 provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-In2Se3 features a steep subthreshold slope with a high ON/OFF ratio (∼1010). The self-aligned α-In2Se3 layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-In2Se3, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-In2Se3 HEMT can provide a viable pathway toward ultrafast neuromorphic computing.

Doxorubicin Detoxification in Healthy Organs Improves Tolerability to High Drug Doses for Enhanced Antitumor Therapy
Qi Jiang - ,
Mengchun Chen - ,
Xuewei Yang - ,
Deli Zhuge - ,
Qingqing Yin - ,
Dongyan Tian - ,
Li Li - ,
Xufei Zhang - ,
Wenbin Xu - ,
Shuangshuang Liu - ,
Fan Li - ,
Cuiye Weng - ,
Yijing Lin - ,
Haonan Wang - ,
Dapang Rao - ,
Yiming Chen - ,
Qiangjun Cai - ,
Linzhi Yan - ,
Ledan Wang - ,
Fang Wang - ,
Xiaosheng Lu - ,
Bin Wen - ,
Yingzheng Zhao *- ,
Feng Zhang *- ,
Weiliang Xia *- ,
Haiyan Zhu *- , and
Yijie Chen *
With its well-documented toxicity, the use of doxorubicin (Dox) for cancer treatment requires trade-offs between safety and effectiveness. This limited use of Dox also hinders its functionality as an immunogenic cell death inducer, thus impeding its usefulness for immunotherapeutic applications. Here, we develop a biomimetic pseudonucleus nanoparticle (BPN-KP) by enclosing GC-rich DNA within erythrocyte membrane modified with a peptide to selectively target healthy tissue. By localizing treatment to organs susceptible to Dox-mediated toxicity, BPN-KP acts as a decoy that prevents the drug from intercalating into the nuclei of healthy cells. This results in significantly increased tolerance to Dox, thereby enabling the delivery of high drug doses into tumor tissue without detectable toxicity. By lessening the leukodepletive effects normally associated with chemotherapy, dramatic immune activation within the tumor microenvironment was also observed after treatment. In three different murine tumor models, high-dose Dox with BPN-KP pretreatment resulted in significantly prolonged survival, particularly when combined with immune checkpoint blockade therapy. Overall, this study demonstrates how targeted detoxification using biomimetic nanotechnology can help to unlock the full potential of traditional chemotherapeutics.

Neutrophil-Membrane-Coated Biomineralized Metal–Organic Framework Nanoparticles for Atherosclerosis Treatment by Targeting Gene Silencing
Yi Liu - ,
Mengyun He - ,
Yi Yuan - ,
Cunpeng Nie - ,
Kaiji Wei - ,
Tong Zhang - ,
Tingting Chen - , and
Xia Chu *
Antisense oligonucleotides (ASOs) are promising tools for gene silencing and have been exploited as therapeutics for human disease. However, delivery of therapeutic ASOs to diseased tissues or cells and subsequent escape from the endosomes and release of ASO in the cytosol remain a challenge. Here, we reported a neutrophil-membrane-coated zeolitic imidazolate framework-8 (ZIF-8) nanodelivery platform (AM@ZIF@NM) for the targeted transportation of ASOs against microRNA-155 (anti-miRNA-155) to the endothelial cells in atherosclerotic lesions. Neutrophil membrane could improve plaque endothelial cells targeting through the interaction between neutrophil membrane protein CD18 and endothelial cell membrane protein intercellular adhesion molecule-1 (ICAM-1). The ZIF-8 “core” provided high loading capacity and efficient endolysosomal escaping ability. Delivery of anti-miR-155 effectively downregulated miR-155 expression and also saved the expression of its target gene BCL6. Moreover, RELA expression and the expression of its downstream target genes CCL2 and ICAM-1 were correspondingly reduced. Consequently, this anti-miR-155 nanotherapy can inhibit the inflammation of atherosclerotic lesions and alleviate atherosclerosis. Our study shows that the designed biomimetic nanodelivery system has great application prospects in the treatment of other chronic diseases.

Cloaking Mesoporous Polydopamine with Bacterial Membrane Vesicles to Amplify Local and Systemic Antitumor Immunity
Wenfei Chen - ,
Yuanshuai Song - ,
Shuting Bai - ,
Chunting He - ,
Zhaofei Guo - ,
Yining Zhu - ,
Zhirong Zhang - , and
Xun Sun *
As adjuvants or antigens, bacterial membranes have been widely used in recent antibacterial and antitumor research, but they are often injected multiple times to achieve therapeutic outcomes, with limitations in biosafety and clinical application. Herein, we leverage the biocompatibility and immune activation capacity of Salmonella strain VNP20009 to produce double-layered membrane vesicles (DMVs) for enhanced systemic safety and antitumor immunity. Considering the photothermal effect of polydopamine upon irradiation, VNP20009-derived DMVs are prepared to coat the surface of mesoporous polydopamine (MPD) nanoparticles, leading to the potential synergies between photothermal therapy mediated by MPD and immunotherapy magnified by DMVs. The single dose of MPD@DMV can passively target tumors and activate the immune system with upregulated T cell infiltration and secretion levels of pro-inflammatory factors as well as antitumor related cytokines. All of these promoted immune responses result in malignant melanoma tumor regression and extended survival time on local or distant tumor-bearing mouse models. Importantly, we further explore the advantages of intravenous injection of the MPD@DMV agent compared with its intratumoral injection, and the former demonstrates better long-term immune effects on animal bodies. Overall, this formulation design brings broader prospects for the autologous vaccine adjuvant by bacterial membrane vesicles in cancer therapy.

Camouflage Nanoparticles Enable in Situ Bioluminescence-Driven Optogenetic Therapy of Retinoblastoma
Jiali Ding - ,
Jianping Lu - ,
Qian Zhang - ,
Yanan Xu - ,
Bin Song - ,
Yuqi Wu - ,
Haoliang Shi - ,
Binbin Chu *- ,
Houyu Wang *- , and
Yao He *
Optogenetic therapy has emerged as a promising technique for the treatment of ocular diseases; however, most optogenetic tools rely on external blue light to activate the photoswitch, whose relatively strong phototoxicity may induce retinal damage. Herein, we present the demonstration of camouflage nanoparticle-based vectors for in situ bioluminescence-driven optogenetic therapy of retinoblastoma. In biomimetic vectors, the photoreceptor CRY2 and its interacting partner CIB1 plasmid are camouflaged with folic acid ligands and luciferase NanoLuc-modified macrophage membranes. To conduct proof-of-concept research, this study employs a mouse model of retinoblastoma. In comparison to external blue light irradiation, the developed system enables an in situ bioluminescence-activated apoptotic pathway to inhibit tumor growth with greater therapeutic efficacy, resulting in a significant reduction in ocular tumor size. Furthermore, unlike external blue light irradiation, which causes retinal damage and corneal neovascularization, the camouflage nanoparticle-based optogenetic system maintains retinal structural integrity while avoiding corneal neovascularization.

Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection
Conner C. Harper - ,
Zachary M. Miller - ,
Matthew S. McPartlan - ,
Jacob S. Jordan - ,
Randall E. Pedder - , and
Evan R. Williams *
The sizes and shapes of nanoparticles play a critical role in their chemical and material properties. Common sizing methods based on light scattering or mobility lack individual particle specificity, and microscopy-based methods often require cumbersome sample preparation and image analysis. A promising alternative method for the rapid and accurate characterization of nanoparticle size is charge detection mass spectrometry (CDMS), an emerging technique that measures the masses of individual ions. A recently constructed CDMS instrument designed specifically for high acquisition speed, efficiency, and accuracy is described. This instrument does not rely on an ion energy filter or estimates of ion energy that have been previously required for mass determination, but instead uses direct, in situ measurements. A standardized sample of ∼100 nm diameter polystyrene nanoparticles and ∼50 nm polystyrene nanoparticles with amine-functionalized surfaces are characterized using CDMS and transmission electron microscopy (TEM). Individual nanoparticle masses measured by CDMS are transformed to diameters, and these size distributions are in close agreement with distributions measured by TEM. CDMS analysis also reveals dimerization of ∼100 nm nanoparticles in solution that cannot be determined by TEM due to the tendency of nanoparticles to agglomerate when dried onto a surface. Comparing the acquisition and analysis times of CDMS and TEM shows particle sizing rates up to ∼80× faster are possible using CDMS, even when samples ∼50× more dilute were used. The combination of both high-accuracy individual nanoparticle measurements and fast acquisition rates by CDMS represents an important advance in nanoparticle analysis capabilities.

Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal
Kushal Rijal - ,
Stephanie Amos - ,
Pavel Valencia-Acuna - ,
Fatimah Rudayni - ,
Neno Fuller - ,
Hui Zhao *- ,
Hartwin Peelaers *- , and
Wai-Lun Chan *
The nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose–Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar band gaps and ionization potentials but form different lattice structures on MoS2, are investigated. The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal’s unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ∼0.2 eV and ∼2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer toward the interface is observed, which demonstrates the effectiveness of these interfacial IX traps.

Complex Strain Scapes in Reconstructed Transition-Metal Dichalcogenide Moiré Superlattices
Álvaro Rodríguez *- ,
Javier Varillas *- ,
Golam Haider - ,
Martin Kalbáč - , and
Otakar Frank *
This publication is Open Access under the license indicated. Learn More
We investigate the intrinsic strain associated with the coupling of twisted MoS2/MoSe2 heterobilayers by combining experiments and molecular dynamics simulations. Our study reveals that small twist angles (between 0 and 2°) give rise to considerable atomic reconstructions, large moiré periodicities, and high levels of local strain (with an average value of ∼1%). Moreover, the formation of moiré superlattices is assisted by specific reconstructions of stacking domains. This process leads to a complex strain distribution characterized by a combined deformation state of uniaxial, biaxial, and shear components. Lattice reconstruction is hindered with larger twist angles (>10°) that produce moiré patterns of small periodicity and negligible strains. Polarization-dependent Raman experiments also evidence the presence of an intricate strain distribution in heterobilayers with near-0° twist angles through the splitting of the E2g1 mode of the top (MoS2) layer due to atomic reconstruction. Detailed analyses of moiré patterns measured by AFM unveil varying degrees of anisotropy in the moiré superlattices due to the heterostrain induced during the stacking of monolayers.

Enhanced Nanobubble Formation: Gold Nanoparticle Conjugation to Qβ Virus-like Particles
Perouza Parsamian - ,
Yaning Liu - ,
Chen Xie - ,
Zhuo Chen - ,
Peiyuan Kang - ,
Yalini H. Wijesundara - ,
Noora M. Al-Kharji - ,
Ryanne Nicole Ehrman - ,
Orikeda Trashi - ,
Jaona Randrianalisoa - ,
Xiangyu Zhu - ,
Matthew D’Souza - ,
Lucas Anderson Wilson - ,
Moon J. Kim - ,
Zhenpeng Qin *- , and
Jeremiah J. Gassensmith *
Plasmonic gold nanostructures are a prevalent tool in modern hypersensitive analytical techniques such as photoablation, bioimaging, and biosensing. Recent studies have shown that gold nanostructures generate transient nanobubbles through localized heating and have been found in various biomedical applications. However, the current method of plasmonic nanoparticle cavitation events has several disadvantages, specifically including small metal nanostructures (≤10 nm) which lack size control, tuneability, and tissue localization by use of ultrashort pulses (ns, ps) and high-energy lasers which can result in tissue and cellular damage. This research investigates a method to immobilize sub-10 nm AuNPs (3.5 and 5 nm) onto a chemically modified thiol-rich surface of Qβ virus-like particles. These findings demonstrate that the multivalent display of sub-10 nm gold nanoparticles (AuNPs) caused a profound and disproportionate increase in photocavitation by upward of 5–7-fold and significantly lowered the laser fluency by 4-fold when compared to individual sub-10 nm AuNPs. Furthermore, computational modeling showed that the cooling time of QβAuNP scaffolds is significantly extended than that of individual AuNPs, proving greater control of laser fluency and nanobubble generation as seen in the experimental data. Ultimately, these findings showed how QβAuNP composites are more effective at nanobubble generation than current methods of plasmonic nanoparticle cavitation.

Well-Dispersed Fe Nanoclusters for Effectively Increasing the Initial Coulombic Efficiency of the SiO Anode
Zhao Yang - ,
Zhaolin Li - ,
Yaozong Yang - ,
Qian Zhang - ,
Hongliang Xie - ,
Jie Wang - ,
Konrad Świerczek - , and
Hailei Zhao *
An efficient surface modification strategy is proposed to significantly increase the initial Coulombic efficiency (ICE) of SiO anode material. The SiO@Fe material with the Fe nanocluster homogeneously decorating on the SiO surface is successfully prepared by a chemical vapor deposition process. The well-dispersed Fe nanoclusters realize an Ohmic contact with lithium silicates, the commonly regarded irreversible lithiation product, which effectively lowers the electron conduction barriers and promotes the concomitant lithium-ion release of the lithium silicates upon the delithiation process, increasing the ICE of the SiO anode. The prepared SiO@Fe exhibits a much higher ICE of 87.2% compared to 64.4% of pristine SiO, with the largest increment (23%) never reported, except for the prelithiation, and delivers significantly enhanced cycling and rate performance. These findings provide an effective way to convert the “inert” phase to “active” which essentially increases the ICE of the electrode.

Elucidating the Origin of Plasmon-Generated Hot Holes in Water Oxidation
Jiawei Huang - ,
Wenxiao Guo - ,
Shuai He - ,
Justin R. Mulcahy - ,
Alvaro Montoya - ,
Justin Goodsell - ,
Namodhi Wijerathne - ,
Alexander Angerhofer - , and
Wei David Wei *
Plasmon-generated hot electrons in metal/oxide heterostructures have been used extensively for driving photochemistry. However, little is known about the origin of plasmon-generated hot holes in promoting photochemical reactions. Herein, we discover that, during the nonradiative plasmon decay, the interband excitation rather than the intraband excitation generates energetic hot holes that enable to drive the water oxidation at the Au/TiO2 interface. Distinct from lukewarm holes via the intraband excitation that only remain on Au, hot holes from the interband excitation are found to be transferred from Au into TiO2 and stabilized by surface oxygen atoms on TiO2, making them available to oxidize adsorbed water molecules. Taken together, our studies provide spectroscopic evidence to clarify the photophysical process for exciting plasmon-generated hot holes, unravel their atomic-level accumulation sites to maintain the strong oxidizing power in metal/oxide heterostructures, and affirm their crucial functions in governing photocatalytic oxidation reactions.

Solid–Liquid–Gas Management for Low-Cost Hydrogen Gas Batteries
Taoli Jiang - ,
Shuyang Wei - ,
Linxiang Li - ,
Kai Zheng - ,
Xinhua Zheng - ,
Sunhyeong Park - ,
Shuang Liu - ,
Zhengxin Zhu - ,
Zaichun Liu - ,
Yahan Meng - ,
Qia Peng - ,
Yuancheng Feng - , and
Wei Chen *
Aqueous nickel-hydrogen gas (Ni-H2) batteries with excellent durability (>10,000 cycles) are important candidates for grid-scale energy storage but are hampered by the high-cost Pt electrode with limited performance. Herein, we report a low-cost nickel-molybdenum (NiMo) alloy as an efficient bifunctional hydrogen evolution and oxidation reaction (HER/HOR) catalyst for Ni-H2 batteries in alkaline electrolytes. The NiMo alloy demonstrates a high HOR mass-specific kinetic current of 28.8 mA mg–1 at 50 mV as well as a low HER overpotential of 45 mV at a current density of 10 mA cm–2, which is better than most nonprecious metal catalysts. Furthermore, we apply a solid–liquid–gas management strategy to constitute a conductive, hydrophobic network of NiMo using multiwalled carbon nanotubes (NiMo-hydrophobic MWCNT) in the electrode to accelerate HER/HOR activities for much improved Ni-H2 battery performance. As a result, Ni-H2 cells based on the NiMo-hydrophobic MWCNT electrode show a high energy density of 118 Wh kg–1 and a low cost of only 67.5 $ kWh–1. With the low cost, high energy density, excellent durability, and improved energy efficiency, the Ni-H2 cells show great potential for practical grid-scale energy storage.

Efficient Red-Emissive Circularly Polarized Electroluminescence Enabled by Quasi-2D Perovskite with Chiral Spacer Cation
Chang-Hui Yang - ,
Shang-Biao Xiao - ,
Hui Xiao - ,
Liang-Jin Xu *- , and
Zhong-Ning Chen
Perovskites are promising environmentally sustainable materials for circularly polarized electroluminescence (CPEL). While another chiral nonemissive layer is required for the developed perovskite-based CPEL, we report herein a highly efficient circularly polarized electroluminescence based on a single layer of quasi-2D perovskite with achiral phenethylammonium iodide (PEAI) and chiral S/R-1-(1-naphthyl)ethylammonium iodide (S/R-NEAI) as dual spacer cations. The quasi-2D perovskite was further passivated by carbazole-functionalized phosphonium. The as-fabricated film exhibits not only a circular dichroism (CD) signal but also prominent circularly polarized luminescence (CPL) activity with a maximum photoluminescence dissymmetry factor (glum) of ∼2.1 × 10–3. More importantly, a highly efficient, spin-polarized light-emitting diode (LED) was fabricated based on the in situ passivated quasi-2D perovskite with a peak external quantum efficiency of 3.7% and a maximum electroluminescence dissymmetry factor (gEL) of ∼4.0 × 10–3.

Water-Soluble Au25 Clusters with Single-Crystal Structure for Mitochondria-Targeting Radioimmunotherapy
Yue Hua - ,
Zi-Hui Shao - ,
Aoqiang Zhai - ,
Li-Jun Zhang - ,
Zhao-Yang Wang - ,
Ge Zhao - ,
Fuwei Xie - ,
Jun-Qi Liu *- ,
Xueli Zhao *- ,
Xiaoyuan Chen *- , and
Shuang-Quan Zang *
Atomically precise gold clusters play an important role in the development of high-Z-element-based radiosensitizers, due to their intriguing structural diversity and advantages in correlating structures and properties. However, the synthesis of gold clusters with both water-solubility and single-crystal structure remains a challenge. In this study, atomically precise Au25(S-TPP)18 clusters (TPP-SNa = sodium 3-(triphenylphosphonio)propane-1-thiolate bromide) showing both mitochondria-targeting ability and water-solubility were obtained via ligand design for enhanced radioimmunotherapy. Compared with Au25(SG)18 clusters (SG = glutathione), Au25(S-TPP)18 exhibited higher radiosensitization efficiency due to its mitochondria-targeting ability, higher ROS production capacity, and obvious inhibition upon thioredoxin reductase (TrxR). In addition, the enhanced radiotherapy-triggered abscopal effect in combination with checkpoint blockade displayed effective growth inhibition of distant tumors. This work reveals the ligand-regulated organelle targeting ability of metal clusters by which feasible strategies to promote their application in precise theranostics could be realized.

ROS/Electro Dual-Reactive Nanogel for Targeting Epileptic Foci to Remodel Aberrant Circuits and Inflammatory Microenvironment
Zheng Zhou - ,
Keying Li - ,
Yun Guo - ,
Peixin Liu - ,
Qinjun Chen - ,
Hongrui Fan - ,
Tao Sun - , and
Chen Jiang *
Medicinal treatment against epilepsy is faced with intractable problems, especially epileptogenesis that cannot be blocked by clinical antiepileptic drugs (AEDs) during the latency of epilepsy. Abnormal circuits of neurons interact with the inflammatory microenvironment of glial cells in epileptic foci, resulting in recurrent seizures and refractory epilepsy. Herein, we have selected phenytoin (PHT) as a model drug to derive a ROS-responsive and consuming prodrug, which is combined with an electro-responsive group (sulfonate sodium, SS) and an epileptic focus-recognizing group (α-methyl-l-tryptophan, AMT) to form hydrogel nanoparticles (i.e., a nanogel). The nanogel will target epileptic foci, release PHT in response to a high concentration of reactive oxygen species (ROS) in the microenvironment, and inhibit overexcited circuits. Meanwhile, with the clearance of ROS, the nanogel can also reduce oxidative stress and alleviate microenvironment inflammation. Thus, a synergistic regulation of epileptic lesions will be achieved. Our nanogel is expected to provide a more comprehensive strategy for antiepileptic treatment.

Nucleation and Growth of Monolayer MoS2 at Multisteps of MoO2 Crystals by Sulfurization
Yeonjoon Jung - ,
Huije Ryu - ,
Hangyel Kim - ,
Donghoon Moon - ,
Jaewoong Joo - ,
Seong Chul Hong - ,
Jinwoo Kim - , and
Gwan-Hyoung Lee *
Two-dimensional (2D) materials and their heterostructures are promising for next-generation optoelectronics, spintronics, valleytronics, and electronics. Despite recent progress in various growth studies of 2D materials, mechanical exfoliation of flakes is still the most common method to obtain high-quality 2D materials because precisely controlling material growth and synthesizing a single domain during the growth process of 2D materials, for the desired shape and quality, is challenging. Here, we report the nucleation and growth behaviors of monolayer MoS2 by sulfurizing a faceted monoclinic MoO2 crystal. The MoS2 layers nucleated at the thickness steps of the MoO2 crystal and grew epitaxially with crystalline correlation to the MoO2 surface. The epitaxially grown MoS2 layer expands outwardly on the SiO2 substrate, resulting in a monolayer single-crystal film, despite multiple nucleations of MoS2 layers on the MoO2 surface owing to several thickness steps. Although the photoluminescence of MoS2 is quenched owing to efficient charge transfer between MoS2 and metallic MoO2, the MoS2 stretched out to the SiO2 substrate shows a high carrier mobility of (15 cm2 V–1 s–1), indicating that a high-quality monolayer MoS2 film can be grown using the MoO2 crystal as a seed and precursor. Our work shows a method to grow high-quality MoS2 using a faceted MoO2 crystal and provides a deeper understanding of the nucleation and growth of 2D materials on a step-like surface.

Two-Molecule Force Spectroscopy on Proteins
Jiacheng Zuo - and
Hongbin Li *
Many elastomeric proteins, which play important roles in a wide range of biological processes, exist as parallel/antiparallelly arranged dimers or multimers to perform their mechanobiological functions. For example, in striated muscle sarcomeres, the giant muscle protein titin exists as hexameric bundles to mediate the passive elasticity of muscles. However, it has not been possible to directly probe the mechanical properties of such parallelly arranged elastomeric proteins. And it remains unknown if the knowledge obtained from single-molecule force spectroscopy studies can be directly extrapolated to such parallelly/antiparallelly arranged systems. Here, we report the development of atomic force microscopy (AFM)-based two-molecule force spectroscopy to directly probe the mechanical properties of two elastomeric proteins that are arranged in parallel. We developed a twin-molecule approach to allow two parallelly arranged elastomeric proteins to be picked up and stretched simultaneously in an AFM experiment. Our results clearly revealed the mechanical features of such parallelly arranged elastomeric proteins during force–extension measurements and allowed for the determination of mechanical unfolding forces of proteins in such an experimental setting. Our study provides a general and robust experimental strategy to closely mimic the physiological condition of such parallel elastomeric protein multimers.

Bend-Induced Ferroelectric Domain Walls in α-In2Se3
Edmund Han - ,
Shahriar Muhammad Nahid - ,
Tawfiqur Rakib - ,
Gillian Nolan - ,
Paolo F. Ferrari - ,
M. Abir Hossain - ,
André Schleife - ,
SungWoo Nam - ,
Elif Ertekin - ,
Arend M. van der Zande *- , and
Pinshane Y. Huang *
The low bending stiffness of atomic membranes from van der Waals ferroelectrics such as α-In2Se3 allow access to a regime of strong coupling between electrical polarization and mechanical deformation at extremely high strain gradients and nanoscale curvatures. Here, we investigate the atomic structure and polarization at bends in multilayer α-In2Se3 at high curvatures down to 0.3 nm utilizing atomic-resolution scanning transmission electron microscopy, density functional theory, and piezoelectric force microscopy. We find that bent α-In2Se3 produces two classes of structures: arcs, which form at bending angles below ∼33°, and kinks, which form above ∼33°. While arcs preserve the original polarization of the material, kinks contain ferroelectric domain walls that reverse the out-of-plane polarization. We show that these kinks stabilize ferroelectric domains that can be extremely small, down to 2 atoms or ∼4 Å wide at their narrowest point. Using DFT modeling and the theory of geometrically necessary disclinations, we derive conditions for the formation of kink-induced ferroelectric domain boundaries. Finally, we demonstrate direct control over the ferroelectric polarization using templated substrates to induce patterned micro- and nanoscale ferroelectric domains with alternating polarization. Our results describe the electromechanical coupling of α-In2Se3 at the highest limits of curvature and demonstrate a strategy for nanoscale ferroelectric domain patterning.

How Regiochemistry Influences Aggregation Behavior and Charge Transport in Conjugated Organosulfur Polymer Cathodes for Lithium–Sulfur Batteries
Yannik Schütze - ,
Diptesh Gayen - ,
Karol Palczynski - ,
Ranielle de Oliveira Silva - ,
Yan Lu - ,
Michael Tovar - ,
Pouya Partovi-Azar - ,
Annika Bande - , and
Joachim Dzubiella *
This publication is Open Access under the license indicated. Learn More
For lithium–sulfur (Li–S) batteries to become competitive, they require high stability and energy density. Organosulfur polymer-based cathodes have recently shown promising performance due to their ability to overcome common limitations of Li–S batteries, such as the insulating nature of sulfur. In this study, we use a multiscale modeling approach to explore the influence of the regiochemistry of a conjugated poly(4-(thiophene-3-yl)benzenethiol) (PTBT) polymer on its aggregation behavior and charge transport. Classical molecular dynamics simulations of the self-assembly of polymer chains with different regioregularity show that a head-to-tail/head-to-tail regularity can form a well-ordered crystalline phase of planar chains allowing for fast charge transport. Our X-ray diffraction measurements, in conjunction with our predicted crystal structure, confirm the presence of crystalline phases in the electropolymerized PTBT polymer. We quantitatively describe the charge transport in the crystalline phase in a band-like regime. Our results give detailed insights into the interplay between microstructural and electrical properties of conjugated polymer cathode materials, highlighting the effect of polymer chain regioregularity on its charge transport properties.

Piezoelectric Metal–Organic Frameworks Based Sonosensitizer for Enhanced Nanozyme Catalytic and Sonodynamic Therapies
Lihan Cai - ,
Jianjun Du *- ,
Fuping Han - ,
Tiancong Shi - ,
Han Zhang - ,
Yang Lu - ,
Saran Long - ,
Wen Sun - ,
Jiangli Fan - , and
Xiaojun Peng
The regulation of electrostatic electric fields through electrical stimulation is an efficient method to increase the catalytic activity of nanozymes and improve the therapeutic effect of nanozyme catalytic therapy. Piezoelectric materials, which are capable of generating a built-in electric field under ultrasound (US), not only improve the activity of nanozymes but also enable piezoelectric sonodynamic therapy (SDT). In this study, a sonosensitizer based on a Hf-based metal–organic framework (UIO-66) and Au nanoparticles (NPs) was produced. Under US irradiation, UIO-66 can generate a built-in electric field inside the materials, which promotes electron–hole separation and produces reactive oxygen species (ROS). The introduction of Au NPs facilitated the electron transfer, which inhibited the recombination of the electron–hole pairs and improved the piezoelectric properties of UIO-66. The value of the piezoelectric constant (d33) increased from 71 to 122 pmV–1 after the deposition of Au NPs. In addition, the intrinsic catalase and peroxidase activities of the Au NPs were increased 2-fold after the stimulation from the built-in electric field induced through US exposure. In vivo and in vitro experiments revealed that the proposed sonosensitizer can kill cancer cells and inhibit tumor growth in mice through the enhanced piezoelectric SDT and nanozyme catalytic therapy. The piezoelectric sensitizer proposed in this work proved to be an efficient candidate that can be used for multiple therapeutic modalities in tumor therapy.

Three-Dimensionally Complex Phase Behavior and Collective Phenomena in Mixtures of Acoustically Powered Chiral Microspinners
Jeffrey M. McNeill - ,
Yun Chang Choi - ,
Yi-Yu Cai - ,
Jiacen Guo - ,
François Nadal - ,
Cherie R. Kagan *- , and
Thomas E. Mallouk *
The process of dynamic self-organization of small building blocks is fundamental to the emergent function of living systems and is characteristic of their out-of-equilibrium homeostasis. The ability to control the interactions of synthetic particles in large groups could lead to the realization of analogous macroscopic robotic systems with microscopic complexity. Rotationally induced self-organization has been observed in biological systems and modeled theoretically, but studies of fast, autonomously moving synthetic rotors remain rare. Here, we report switchable, out-of-equilibrium hydrodynamic assembly and phase separation in suspensions of acoustically powered chiral microspinners. Semiquantitative modeling suggests that three-dimensionally (3D) complex spinners interact through viscous and weakly inertial (streaming) flows. The interactions between spinners were studied over a range of densities to construct a phase diagram, which included gaseous dimer pairing at low density, collective rotation and multiphase separation at intermediate densities, and ultimately jamming at high density. The 3D chirality of the spinners leads to self-organization in parallel planes, forming a three-dimensionally hierarchical system that goes beyond the 2D systems that have so far been modeled computationally. Dense mixtures of spinners and passive tracer particles also show active–passive phase separation. These observations are consistent with recent theoretical predictions of the hydrodynamic coupling between rotlets generated by autonomous spinners and provide an exciting experimental window to the study of colloidal active matter and microrobotic systems.

Systematic Control of Ferrimagnetic Skyrmions via Composition Modulation in Pt/Fe1–xTbx/Ta Multilayers
Teng Xu - ,
Yuxuan Zhang - ,
Zidong Wang - ,
Hao Bai - ,
Chengkun Song - ,
Jiahao Liu - ,
Yan Zhou - ,
Soong-Geun Je - ,
Alpha T. N’Diaye - ,
Mi-Young Im - ,
Rong Yu - ,
Zhen Chen *- , and
Wanjun Jiang *
Magnetic skyrmions are topological spin textures that can be used as memory and logic components for advancing the next generation spintronics. In this regard, control of nanoscale skyrmions, including their sizes and densities, is of particular importance for enhancing the storage capacity of skyrmionic devices. Here, we propose a viable route for engineering ferrimagnetic skyrmions via tuning the magnetic properties of the involved ferrimagnets Fe1–xTbx. Via tuning the composition of Fe1–xTbx that alters the magnetic anisotropy and the saturation magnetization, the size of the ferrimagnetic skyrmion (ds) and the average density (ηs) can be effectively tailored in [Pt/Fe1–xTbx/Ta]10 multilayers. In particular, a stabilization of sub-50 nm skyrmions with a high density is demonstrated at room temperature. Our work provides an effective approach for designing ferrimagnetic skyrmions with the desired size and density, which could be useful for enabling high-density ferrimagnetic skyrmionics.

Liquid-Metal-Printed Ultrathin Oxides for Atomically Smooth 2D Material Heterostructures
Yiyu Zhang - ,
Dasari Venkatakrishnarao - ,
Michel Bosman - ,
Wei Fu - ,
Sarthak Das - ,
Fabio Bussolotti - ,
Rainer Lee - ,
Siew Lang Teo - ,
Ding Huang - ,
Ivan Verzhbitskiy - ,
Zhuojun Jiang - ,
Zhuoling Jiang - ,
Jianwei Chai - ,
Shi Wun Tong - ,
Zi-En Ooi - ,
Calvin Pei Yu Wong - ,
Yee Sin Ang - ,
Kuan Eng Johnson Goh *- , and
Chit Siong Lau *
Two-dimensional (2D) semiconductors are promising channel materials for continued downscaling of complementary metal-oxide-semiconductor (CMOS) logic circuits. However, their full potential continues to be limited by a lack of scalable high-k dielectrics that can achieve atomically smooth interfaces, small equivalent oxide thicknesses (EOTs), excellent gate control, and low leakage currents. Here, large-area liquid-metal-printed ultrathin Ga2O3 dielectrics for 2D electronics and optoelectronics are reported. The atomically smooth Ga2O3/WS2 interfaces enabled by the conformal nature of liquid metal printing are directly visualized. Atomic layer deposition compatibility with high-k Ga2O3/HfO2 top-gate dielectric stacks on a chemical-vapor-deposition-grown monolayer WS2 is demonstrated, achieving EOTs of ∼1 nm and subthreshold swings down to 84.9 mV/dec. Gate leakage currents are well within requirements for ultrascaled low-power logic circuits. These results show that liquid-metal-printed oxides can bridge a crucial gap in dielectric integration of 2D materials for next-generation nanoelectronics.
Retractions
Retraction of “Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery”
Xiaobin Xu - ,
Shuang Hou - ,
Natcha Wattanatorn - ,
Fang Wang - ,
Qing Yang - ,
Chuanzhen Zhao - ,
Xiao Yu - ,
Hsian-Rong Tseng - ,
Steven J. Jonas *- , and
Paul S. Weiss *
This publication is free to access through this site. Learn More
Mastheads
Issue Editorial Masthead
This publication is free to access through this site. Learn More
Issue Publication Information
This publication is free to access through this site. Learn More