
About the Cover:
Crystal structure of the class D b-lactamase OXA-1 in complex with the carbapenem antibiotic doripenem. This atomic-resolution structure of the acyl-enzyme complex provides unique insights into the mechanism of carbapenem inhibition among the class D b-lactamases [Schneider, K. D., et al. (2009) Biochemistry 48, 11840-11847]. View the article.
Rapid Reports

A Short, Strong Hydrogen Bond in the Active Site of Human Carbonic Anhydrase II
Balendu Sankara Avvaru - ,
Chae Un Kim - ,
Katherine H. Sippel - ,
Sol M. Gruner - ,
Mavis Agbandje-McKenna - ,
David N. Silverman *- , and
Robert McKenna *
The crystal structure of human carbonic anhydrase II (HCA II) obtained at 0.9 Å resolution reveals that a water molecule, termed deep water, Dw, and bound in a hydrophobic pocket of the active site forms a short, strong hydrogen bond with the zinc-bound solvent molecule, a conclusion based on the observed oxygen−oxygen distance of 2.45 Å. This water structure has similarities with hydrated hydroxide found in crystals of certain inorganic complexes. The energy required to displace Dw contributes in significant part to the weak binding of CO2 in the enzyme−substrate complex, a weak binding that enhances kcat for the conversion of CO2 into bicarbonate. In addition, this short, strong hydrogen bond is expected to contribute to the low pKa of the zinc-bound water and to promote proton transfer in catalysis.
Articles

Reticulon RTN1-CCT Peptide: A Potential Nuclease and Inhibitor of Histone Deacetylase Enzymes
Ridvan Nepravishta - ,
Alessia Bellomaria - ,
Francesca Polizio - ,
Maurizio Paci - , and
Sonia Melino *
RTN1-C protein is a membrane protein localized in the ER and expressed in the nervous system, and its biological role is not completely clarified. Our previous studies have shown that the C-terminal region of RTN1-C, corresponding to the fragment from residues 186 to 208, was able to bind the nucleic acids and to interact with histone deacetylase (HDAC) enzymes. In the present work the properties of the synthetic RTN1-CCT peptide corresponding to this region were studied with relation to its ability to bind the metal ions in its N-terminal region. RTN1-CCT peptide is characterized by the presence of high-affinity copper and nickel ion sites. The nuclease activity of the metal−peptide complex was observed due to the presence of an ATCUN-binding motif. Moreover, the effect of the Cu/Ni−RTN1-CCT complexes on the HDAC activity was investigated. The histone deacetylase inhibitors are a new class of antineoplastic agents currently being evaluated in clinical trials. Our data show that the acetylated form of the metal−peptide complex is able to inhibit the HDAC activity at micromolar concentrations. These results allow to propose the Cu/Ni−RTN1-CCT complexes as models for the design of antitumor agents.

Enthalpy−Entropy Contribution to Carcinogen-Induced DNA Conformational Heterogeneity
Fengting Liang - and
Bongsup P. Cho *
DNA damage by adduct formation is a critical step for the initiation of carcinogenesis. Aromatic amines are strong inducers of environmental carcinogenesis. Their DNA adducts are known to exist in an equilibrium between the major groove (B) and base-displaced stacked (S) conformations. However, the factors governing such heterogeneity remain unclear. Here we conducted extensive calorimetry/NMR/CD studies on the model DNA lesions caused by fluorinated 2-aminfluorene (FAF) and 4-aminobiphenyl (FABP) in order to gain thermodynamic and kinetic insights into the S/B conformational equilibrium. We demonstrate that there are large differences in enthalpy−entropy compensations for FABP and FAF. The small and flexible FABP exclusively adopts the less perturbed B conformer with small enthalpy (ΔΔH-2.7 kcal/mol)/entropy (ΔΔS-0.7 eu) change. In contrast, FAF stacks better and exists as a mixture of B and S conformers with large enthalpy (ΔΔH-13.4 kcal/mol)/entropy (ΔΔS-34.2 eu) compensation. van’t Hoff analysis of dynamic 19F NMR data indicated ΔHB↔S = 4.1 kcal/mol in favor of the B conformer and ΔSB↔S = 15.6 cal mol−1 K−1 in favor of the intercalated S conformer. These findings demonstrate that the favorable entropy of the S conformer over B conformer determines the S/B population ratios at physiological temperatures.

Structural Guidance of the Photocycle of Channelrhodopsin-2 by an Interhelical Hydrogen Bond
Christian Bamann *- ,
Ronnie Gueta - ,
Sonja Kleinlogel - ,
Georg Nagel - , and
Ernst Bamberg
Channelrhodopsin-2 (ChR2) is a light-gated cation channel and a member of the family of retinylidene photoreceptors. Since the demonstration of light-induced depolarization of ChR2-expressing animal cell membranes, it was increasingly exploited for light triggering of action potentials. ChR2 conducts cations upon light absorption that embodies retinal isomerization as the primary reaction and a structurally unknown opening mechanism. It is evident from spectroscopic data that protonation reactions at the Schiff base are part of the photocycle, comparable to other microbial-type rhodopsins. However, the connection between the processes at the chromophore site and the channel’s pore remained enigmatic. Here, we use slow mutants of ChR2 that we generated by disturbing a postulated hydrogen bond when mutating C128 in the transmembrane (TM) helix 3 and D156 in TM helix 4. The lifetime of the mutants' open state is increased more than 100 times. We investigated the spectral properties of the slow mutants. Whereas the deprotonation of the Schiff base (yielding P390) occurs on the same time scale as that of the wild type, reprotonation to P520 is retarded in the slow mutants and their photocycle is split, leading to the presence of two photointermediates, P390 and P520, in the open state. The photoreactions of P390 and P520 lead to a quenching of the current in electrophysiological measurements. We conclude that the putative hydrogen bond between C128 and D156 is an important structural determinant of the channel’s closing reaction. Furthermore, we show that the D156A mutant is even more suitable for light control of excitable cells than C128A.

A Single Glutamate Residue Controls the Oligomerization, Function, and Stability of the Aquaglyceroporin GlpF
Florian Cymer - and
Dirk Schneider *
Like many other α-helical membrane proteins, the monomeric Escherichia coli aquaglyceroporin GlpF associates within cellular membranes and forms higher-order oligomeric structures. A potential impact of the oligomeric state on the protein function remains enigmatic. We have analyzed the role of residues W42 and E43 in the oligomerization of the E. coli GlpF protein in vitro and in vivo. In contrast to W42, the polar glutamate residue at position 43 appears to be critical for oligomerization. While other polar residues can substitute for the function of E43, replacement of E43 with alanine results in a greatly reduced GlpF oligomerization propensity. The reduced interaction propensity of GlpF E43A correlates with an impaired in vivo function as well as a decreased in vivo stability. Therefore, E43 is critical for the proper oligomerization of GlpF, and protein oligomerization appears to be crucial for the channel function as well as for the in vivo stability of the protein.

Synthetic Fusion Peptides of Tick-Borne Encephalitis Virus as Models for Membrane Fusion
Jinhe Pan - ,
C. Benjamin Lai - ,
Walter R. P. Scott - , and
Suzana K. Straus *
The fusion peptide of TBEV is a short segment of the envelope protein that mediates viral and host cell membrane fusion at acidic pH. Previous studies on the E protein have shown that mutations at L107 have an effect on fusogenic activity. Structural studies have also suggested that during the fusion process the E protein rearranges to form a trimer. In the present study, a number of short peptides were synthesized, and their structure/activity was examined: (1) monomers consisting of residues 93−113 of the wild-type E protein with Leu at position 107 (WT) and two mutants, namely, L107F and L107T; (2) a monomer consisting of residues 93−113 of the E protein with a C105A mutation (TFPmn); (3) a trimer consisting of three monomers described in (2), linked at the C-terminus via 1 Lys (TFPtr); (4) a monomer consisting of residues 93−113 of the E protein plus six additional Lys at the C-terminus; and (5) a trimer consisting of three monomers described in (3), linked via the side chain of the sixth lysine. The secondary structure content of all peptides was investigated using circular dichroism (CD). Approximately seven of the residues were in β-strand conformation, in the presence of POPC/POPE/cholesterol. The structures did not depend on pH significantly. The fusogenicity of the peptides was measured by FRET and photon correlation spectroscopy. The data suggest that TFPtr is the most fusogenic at acidic pH and that the mutation from L107 to T reduces activity. Molecular dynamics simulations of WT, L107T, and L107F suggest that this reduction in activity may be related to the fact that the mutations disrupt trimer stability. Finally, tryptophan fluorescence experiments were used to localize the peptides in the membrane. It was found that WT, L107F, TFPmn, and TFPtr could penetrate better into the acyl chain region of the lipids than the other peptides tested. The implications of these results on the fusion mechanism of TBEV E protein will be presented.

DNA Repair by Photolyase: A Novel Substrate with Low Background Absorption around 265 nm for Transient Absorption Studies in the UV
Viruthachalam Thiagarajan - ,
Sandrine Villette - ,
Agathe Espagne - ,
Andre P. M. Eker - ,
Klaus Brettel - , and
Martin Byrdin *
CPD photolyase enzymatically repairs the major UV-induced lesion in DNA, the cyclobutane pyrimidine dimer (CPD), by photoreversion of the damage reaction. An enzyme-bound reduced flavin (FADH−) cofactor functions as photosensitizer. Upon excitation, it transiently transfers an electron to the CPD, triggering scission of the interpyrimidine bonds. After repair completion, the electron returns to the flavin to restore its functional reduced form. A major difficulty for time-resolved spectroscopic monitoring of the enzymatic repair reaction is that absorption changes around 265 nm accompanying pyrimidine restoration are obscured by the strong background absorption of the nondimerized bases in DNA. Here we present a novel substrate for CPD photolyase that absorbs only weakly around 265 nm: a modified thymidine 10-mer with a central CPD and all bases, except the one at the 3′ end, replaced by 5,6-dihydrothymine which virtually does not absorb around 265 nm. Repair of this substrate by photolyases from Anacystis nidulans and from Escherichia coli was compared with repair of two conventional substrates: a 10-mer of unmodified thymidines containing a central CPD and an acetone-sensitized thymidine 18-mer that contained in average six randomly distributed CPDs per strand. In all cases, the novel substrate was repaired with an efficiency very similar to that of the conventional substrates (quantum yields in the order of 0.5 upon excitation of FADH−). Flash-induced transient absorption changes at 267 nm could be recorded on a millisecond time scale with a single subsaturating flash and yielded very similar signals for all three substrates. Because of its low background absorption around 265 nm and the defined structure, the novel substrate is a promising tool for fast and ultrafast transient absorption studies on pyrimidine dimer splitting by CPD photolyase.

Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria
Huseyin Cimen - ,
Min-Joon Han - ,
Yongjie Yang - ,
Qiang Tong - ,
Hasan Koc - , and
Emine C. Koc *
A member of the sirtuin family of NAD+-dependent deacetylases, SIRT3, is identified as one of the major mitochondrial deacetylases located in mammalian mitochondria responsible for deacetylation of several metabolic enzymes and components of oxidative phosphorylation. Regulation of protein deacetylation by SIRT3 is important for mitochondrial metabolism, cell survival, and longevity. In this study, we identified one of the Complex II subunits, succinate dehydrogenase flavoprotein (SdhA) subunit, as a novel SIRT3 substrate in SIRT3 knockout mice. Several acetylated Lys residues were mapped by tandem mass spectrometry, and we determined the role of acetylation in Complex II activity in SIRT3 knockout mice. In agreement with SIRT3-dependent activation of Complex I, we observed that deacetylation of the SdhA subunit increased the Complex II activity in wild-type mice. In addition, we treated K562 cell lines with nicotinamide and kaempferol to inhibit deacetylase activity of SIRT3 and stimulate SIRT3 expression, respectively. Stimulation of SIRT3 expression decreased the level of acetylation of the SdhA subunit and increased Complex II activity in kaempherol-treated cells compared to control and nicotinamide-treated cells. Evaluation of acetylated residues in the SdhA crystal structure from porcine and chicken suggests that acetylation of the hydrophilic surface of SdhA may control the entry of the substrate into the active site of the protein and regulate the enzyme activity. Our findings constitute the first evidence of the regulation of Complex II activity by the reversible acetylation of the SdhA subunit as a novel substrate of the NAD+-dependent deacetylase, SIRT3.

Molecular Species of Phosphatidylinositol-Cycle Intermediates in the Endoplasmic Reticulum and Plasma Membrane
Yulia V. Shulga - ,
David S. Myers - ,
Pavlina T. Ivanova - ,
Stephen B. Milne - ,
H. Alex Brown *- ,
Matthew K. Topham - , and
Richard M. Epand *
Phosphatidylinositol (PI) turnover is a process requiring both the plasma and ER membranes. We have determined the distribution of phosphatidic acid (PA) and PI and their acyl chain compositions in these two subcellular membranes using mass spectrometry. We assessed the role of PI cycling in determining the molecular species and quantity of these lipids by comparing the compositions of the two membranes isolated from embryonic fibroblasts obtained from diacylglycerol kinase ε (DGKε) knockout (KO) and wild-type (WT) mice. In the KO cells, the conversion of arachidonoyl-rich DAG to PA is blocked by the absence of DGKε, resulting in a reduction in the rate of PI cycling. The acyl chain composition is very similar for PI and PA in the endoplasmic reticulum (ER) versus plasma membrane (PM) and for WT versus KO. However, the acyl chain profile for PI is very different from that for PA. This indicates that DGKε is not facilitating the direct transfer of a specific species of PA between the PM and the ER. Approximately 20% of the PA in the ER membrane has one short acyl chain of 14 or fewer carbons. These species of PA are not converted into PI but may play a role in stabilizing regions of high positive curvature in the ER. There are also PI species in both the ER and PM for which there is no detectable PA precursor, indicating that these species of PI are unlikely to arise via the PI cycle. We find that in the PM of KO cells the levels of PI and of PA are decreased ∼3-fold in comparison with those in either the PM of WT cells or the ER of KO cells. The PI cycle is slowed in the KO cells; hence, the lipid intermediates of the PI cycle can no longer be interconverted and are depleted from the PI cycle by conversion to other species. There is less of an effect of the depletion in the ER where de novo synthesis of PA occurs in comparison with the PM.

Calmodulin-Induced Conformational and Hydrodynamic Changes in the Catalytic Domain of Bordetella pertussis Adenylate Cyclase Toxin
Johanna C. Karst - ,
Ana Cristina Sotomayor Pérez - ,
J. Iñaki Guijarro - ,
Bertrand Raynal - ,
Alexandre Chenal *- , and
Daniel Ladant *
Bordetella pertussis, the causative agent of whooping cough, secretes among various toxins an adenylate cyclase (CyaA) that displays a unique mechanism of cell invasion, which involves a direct translocation of its N-terminal catalytic domain (AC, 400 residues) across the plasma membrane of the eukaryotic targeted cells. Once into the cytosol, AC is activated by endogenous calmodulin and produces toxic amounts of cAMP. The structure of AC in complex with the C-terminal part of calmodulin has recently been determined. However, as the structure of the catalytic domain in the absence of calmodulin is still lacking, the molecular basis of AC activation by calmodulin remains largely unknown. To characterize this activation mechanism, we investigated here the biophysical properties of the isolated catalytic domain in solution with or without calmodulin. We found that calmodulin triggered only minor modifications of the protein secondary and tertiary structure but had a pronounced effect on the hydrodynamic properties of AC. Indeed, while the isolated catalytic domain was spherical and hydrated, it underwent a significant elongation as well as compaction and dehydration upon calmodulin interaction. On the basis of these data, we propose a model for the structural transition between the calmodulin-free and calmodulin-bound AC.

Inhibition of the Class C β-Lactamase from Acinetobacter spp.: Insights into Effective Inhibitor Design
Sarah M. Drawz - ,
Maja Babic - ,
Christopher R. Bethel - ,
Magda Taracila - ,
Anne M. Distler - ,
Claudia Ori - ,
Emilia Caselli - ,
Fabio Prati *- , and
Robert A. Bonomo *
The need to develop β-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed. In the boronic acid series, a chiral cephalothin analogue with a meta-carboxyphenyl moiety corresponding to the C3/C4 carboxylate of β-lactams showed the lowest Ki (11 ± 1 nM). In antimicrobial susceptibility tests, this cephalothin analogue lowered the ceftazidime and cefotaxime minimum inhibitory concentrations (MICs) of Escherichia coli DH10B cells carrying blaADC from 16 to 4 μg/mL and from 8 to 1 μg/mL, respectively. On the other hand, each carbapenem exhibited a Ki of <20 μM, and timed electrospray ionization mass spectrometry (ESI-MS) demonstrated the formation of adducts corresponding to acyl−enzyme intermediates with both intact carbapenem and carbapenem lacking the C6 hydroxyethyl group. To improve our understanding of the interactions between the β-lactamase and the inhibitors, we constructed models of ADC as an acyl−enzyme intermediate with (i) the meta-carboxyphenyl cephalothin analogue and (ii) the carbapenems, imipenem and meropenem. Our first model suggests that this chiral cephalothin analogue adopts a novel conformation in the β-lactamase active site. Further, the addition of the substituent mimicking the cephalosporin dihydrothiazine ring may significantly improve affinity for the ADC β-lactamase. In contrast, the ADC−carbapenem models offer a novel role for the R2 side group and also suggest that elimination of the C6 hydroxyethyl group by retroaldolic reaction leads to a significant conformational change in the acyl−enzyme intermediate. Lessons from the diverse mechanisms and structures of the boronic acid derivatives and carbapenems provide insights for the development of new β-lactamase inhibitors against these critical drug resistance targets.

The Essential Escherichia coli Apolipoprotein N-Acyltransferase (Lnt) Exists as an Extracytoplasmic Thioester Acyl-Enzyme Intermediate
Nienke Buddelmeijer *- and
Ry Young
Escherichia coli apolipoprotein N-acyltransferase (Lnt) transfers an acyl group from sn-1-glycerophospholipid to the free α-amino group of the N-terminal cysteine of apolipoproteins, resulting in mature triacylated lipoprotein. Here we report that the Lnt reaction proceeds through an acyl-enzyme intermediate in which a palmitoyl group forms a thioester bond with the thiol of the active site residue C387 that was cleaved by neutral hydroxylamine. Lnt(C387S) also formed a fatty acyl intermediate that was resistant to neutral hydroxylamine treatment, consistent with formation of an oxygen−ester linkage. Lnt(C387A) did not form an acyl-enzyme intermediate and, like Lnt(C387S), did not have any detectable Lnt activity, indicating that acylation cannot occur at other positions in the catalytic domain. The existence of this thioacyl-enzyme intermediate allowed us to determine whether essential residues in the catalytic domain of Lnt affect the first step of the reaction, the formation of the acyl-enzyme intermediate, or the second step in which the acyl chain is transferred to the apolipoprotein substrate. In the catalytic triad, E267 is required for the formation of the acyl-enzyme intermediate, indicating its role in enhancing the nucleophilicity of C387. E343 is also involved in the first step but is not in close proximity to the active site. W237, Y388, and E389 play a role in the second step of the reaction since acyl-Lnt is formed but N-acylation does not occur. The data presented allow discrimination between the functions of essential Lnt residues in catalytic activity and substrate recognition.

Structural and Functional Characterization of the Monomeric U-Box Domain from E4B
Kyle A. Nordquist - ,
Yoana N. Dimitrova - ,
Peter S. Brzovic - ,
Whitney B. Ridenour - ,
Kim A. Munro - ,
Sarah E. Soss - ,
Richard M. Caprioli - ,
Rachel E. Klevit - , and
Walter J. Chazin *
Substantial evidence has accumulated indicating a significant role for oligomerization in the function of E3 ubiquitin ligases. Among the many characterized E3 ligases, the yeast U-box protein Ufd2 and its mammalian homologue E4B appear to be unique in functioning as monomers. An E4B U-box domain construct (E4BU) has been subcloned, overexpressed in Escherichia coli, and purified, which enabled determination of a high-resolution NMR solution structure and detailed biophysical analysis. E4BU is a stable monomeric protein that folds into the same structure observed for other structurally characterized U-box domain homodimers. Multiple sequence alignment combined with comparative structural analysis reveals substitutions in the sequence that inhibit dimerization. The interaction between E4BU and the E2 conjugating enzyme UbcH5c has been mapped using NMR, and these data have been used to generate a structural model for the complex. The E2 binding site is found to be similar to that observed for dimeric U-box and RING domain E3 ligases. Despite the inability to dimerize, E4BU was found to be active in a standard autoubiquitination assay. The structure of E4BU and its ability to function as a monomer are discussed in light of the ubiquitous observation of U-box and RING domain oligomerization.

Role of Signature Lysines in the Deviant Walker A Motifs of the ArsA ATPase
Hsueh-Liang Fu - ,
A. Abdul Ajees - ,
Barry P. Rosen - , and
Hiranmoy Bhattacharjee *
The ArsA ATPase belongs to the P-loop GTPase subgroup within the GTPase superfamily of proteins. Members of this subgroup have a deviant Walker A motif which contains a signature lysine that is predicted to make intermonomer contact with the bound nucleotides and to play a role in ATP hydrolysis. ArsA has two signature lysines located at positions 16 and 335. The role of Lys16 in the A1 half and Lys335 in the A2 half was investigated by altering the lysines individually to alanine, arginine, leucine, methionine, glutamate, and glutamine by site-directed mutagenesis. While Lys16 mutants show similar resistance phenotypes as the wild type, the Lys335 mutants are sensitive to higher concentrations of arsenite. K16Q ArsA shows 70% of wild-type ATPase activity while K335Q ArsA is inactive. ArsA is activated by binding of Sb(III), and both wild-type and mutant ArsAs bind Sb(III) with a 1:1 stoichiometry. Although each ArsA binds nucleotide, the binding affinity decreases in the order wild type > K16Q > K335Q. The results of limited trypsin digestion analysis indicate that both wild type and K16Q adopt a similar conformation during activated catalysis, whereas K335Q adopts a conformation that is resistant to trypsin cleavage. These biochemical data along with structural modeling suggest that, although Lys16 is not critical for ATPase activity, Lys335 is involved in intersubunit interaction and activation of ATPase activity in both halves of the protein. Taken together, the results indicate that Lys16 and Lys335, located in the A1 and A2 halves of the protein, have different roles in ArsA catalysis, consistent with our proposal that the nucleotide binding domains in these two halves are functionally nonequivalent.

The Prosegment Catalyzes Pepsin Folding to a Kinetically Trapped Native State
Derek R. Dee - and
Rickey Y. Yada *
Investigations of irreversible protein unfolding often assume that alterations to the unfolded state, rather than the nature of the native state itself, are the cause of the irreversibility. However, the present study describes a less common explanation for the irreversible denaturation of pepsin, a zymogen-derived aspartic peptidase. The presence of a large folding barrier combined with the thermodynamically metastable nature of the native state, the formation of which depends on a separate prosegment (PS) domain, is the source of the irreversibility. Pepsin is unable to refold to the native state upon return from denaturing conditions due to a large folding barrier (24.6 kcal/mol) and instead forms a thermodynamically stable, yet inactive, refolded state. The native state is kinetically stabilized by an unfolding activation energy of 24.5 kcal/mol, comparable to the folding barrier, indicating that native pepsin exists as a thermodynamically metastable state. However, in the presence of the PS, the native state becomes thermodynamically stable, and the PS catalyzes pepsin folding by stabilizing the folding transition state by 14.7 kcal/mol. Once folded, the PS is removed, and the native conformation exists as a kinetically trapped state. Thus, while PS-guided folding is thermodynamically driven, without the PS the pepsin energy landscape is dominated by kinetic barriers rather than by free energy differences between native and denatured states. As pepsin is the archetype of a broad class of aspartic peptidases of similar structure and function, and many require their PS for correct folding, these results suggest that the occurrence of native states optimized for kinetic rather than thermodynamic stability may be a common feature of protein design.

Studies on the Mechanism of p-Hydroxyphenylacetate 3-Hydroxylase from Pseudomonas aeruginosa: A System Composed of a Small Flavin Reductase and a Large Flavin-Dependent Oxygenase
Sumita Chakraborty - ,
Mariliz Ortiz-Maldonado - ,
Barrie Entsch - , and
David P. Ballou *
There are two known types of microbial two-component flavin-dependent monooxygenases that catalyze oxygenation of p-hydroxyphenylacetate (HPA), and they are distinguished by having structurally distinct reductases and oxygenases. This paper presents a detailed analysis of the properties of the enzyme from Pseudomonas aeruginosa, an example of one group, and compares its properties to those published for the Acinetobacter baumannii enzyme, an example of the alternative group. The reductase and oxygenase from P. aeruginosa were expressed in Escherichia coli. The reductase was purified as a stable C-terminally His-tagged yellow protein containing weakly bound FAD, and the oxygenase was purified as a stable colorless N-terminally His-tagged protein. The reductase catalyzes the reduction of FAD by NADH and releases the FADH− product into solution, but unlike the reductase from A. baumannii, this catalysis is not influenced by HPA. The oxygenase binds the released FADH− and catalyzes the oxygenation of HPA to form 3,4-dihydroxyphenylacetate, after which the FAD dissociates to be re-reduced by the reductase, a common overall pattern for two-component flavin-dependent oxygenases. With this system, it appears that interactions between the reductase and the oxygenase can facillitate the transfer of FADH− to the oxygenase, although they are not required. We show that the P. aeruginosa oxygenase system in complex with FADH− reacts with O2 to form a quasi-stable, unusually high-extinction flavin hydroperoxide species that binds HPA and reacts to form the product. The resultant flavin hydroxide decomposes to FAD and water while still bound to the oxygenase and then releases product and FAD from the protein. Unlike the enzyme from A. baumannii, during normal catalysis involving both the reductase and oxygenase, the rate-determining step in catalysis is the dissociation of FAD from the oxygenase in a process that is independent of the concentration of HPA. Structures for the reductases and oxygenases from A. baumannii and from Thermus thermophilus (similar to the P. aeruginosa system) form a basis for interpreting the molecular origins of the differences between the two groups of flavin-dependent two-component oxygenases.

Mechanistic Studies of Human Spermine Oxidase: Kinetic Mechanism and pH Effects
Mariya S. Adachi - ,
Paul R. Juarez - , and
Paul F. Fitzpatrick *
In mammalian cells, the flavoprotein spermine oxidase (SMO) catalyzes the oxidation of spermine to spermidine and 3-aminopropanal. Mechanistic studies have been conducted with the recombinant human enzyme. The initial velocity pattern in which the ratio between the concentrations of spermine and oxygen is kept constant establishes the steady-state kinetic pattern as ping-pong. Reduction of SMO by spermine in the absence of oxygen is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with a limiting value (k3) of 49 s−1 and an apparent Kd value of 48 μM at pH 8.3. The rate constant for the slow step is independent of the spermine concentration, with a value of 5.5 s−1, comparable to the kcat value of 6.6 s−1. The kinetics of the oxidative half-reaction depend on the aging time after the spermine and enzyme are mixed in a double-mixing experiment. At an aging time of 6 s, the reaction is monophasic with a second-order rate constant of 4.2 mM−1 s−1. At an aging time of 0.3 s, the reaction is biphasic with two second-order constants equal to 4.0 and 40 mM−1 s−1. Neither is equal to the kcat/KO2 value of 13 mM−1 s−1. These results establish the existence of more than one pathway for the reaction of the reduced flavin intermediate with oxygen. The kcat/KM value for spermine exhibits a bell-shaped pH profile, with an average pKa value of 8.3. This profile is consistent with the active form of spermine having three charged nitrogens. The pH profile for k3 shows a pKa value of 7.4 for a group that must be unprotonated. The pKi−pH profiles for the competitive inhibitors N,N′-dibenzylbutane-1,4-diamine and spermidine show that the fully protonated forms of the inhibitors and the unprotonated form of an amino acid residue with a pKa of ∼7.4 in the active site are preferred for binding.

The Uremic Toxin 3-Indoxyl Sulfate Is a Potent Endogenous Agonist for the Human Aryl Hydrocarbon Receptor
Jennifer C. Schroeder - ,
Brett C. DiNatale - ,
Iain A. Murray - ,
Colin A. Flaveny - ,
Qiang Liu - ,
Elizabeth M. Laurenzana - ,
Jyh Ming Lin - ,
Stephen C. Strom - ,
Curtis J. Omiecinski - ,
Shantu Amin - , and
Gary H. Perdew *
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in the regulation of multiple cellular pathways, such as xenobiotic metabolism and Th17 cell differentiation. Identification of key physiologically relevant ligands that regulate AHR function remains to be accomplished. Screening of indole metabolites has identified indoxyl 3-sulfate (I3S) as a potent endogenous ligand that selectively activates the human AHR at nanomolar concentrations in primary human hepatocytes, regulating transcription of multiple genes, including CYP1A1, CYP1A2, CYP1B1, UGT1A1, UGT1A6, IL6, and SAA1. Furthermore, I3S exhibits an ∼500-fold greater potency in terms of transcriptional activation of the human AHR relative to the mouse AHR in cell lines. Structure-function studies reveal that the sulfate group is an important determinant for efficient AHR activation. This is the first phase II enzymatic product identified that can significantly activate the AHR, and ligand competition binding assays indicate that I3S is a direct AHR ligand. I3S failed to activate either CAR or PXR. The physiological importance of I3S lies in the fact that it is a key uremic toxin that accumulates to high micromolar concentrations in kidney dialysis patients, but its mechanism of action is unknown. I3S represents the first identified relatively high potency endogenous AHR ligand that plays a key role in human disease progression. These studies provide evidence that the production of I3S can lead to AHR activation and altered drug metabolism. Our results also suggest that prolonged activation of the AHR by I3S may contribute to toxicity observed in kidney dialysis patients and thus represent a possible therapeutic target.