
About the Cover:
Articles

Rational Design of Monodispersed Mutants of Proteins by Identifying Aggregation Contact Sites Using Solubilizing Agents
Tatsuichiro Tsuji - ,
Sosuke Yoshinaga - ,
Mitsuhiro Takeda - ,
Takafumi Sato - ,
Akihiro Sonoda - ,
Norihito Ishida - ,
Kaori Yunoki - ,
Etsuko Toda - ,
Yuya Terashima - ,
Kouji Matsushima - , and
Hiroaki Terasawa *
Suppression of protein aggregation is a subject of growing importance in the treatment of protein aggregation diseases, an urgent worldwide human health problem, and the production of therapeutic proteins, such as antibody drugs. We previously reported a method to identify compounds that suppress aggregation, based on screening using multiple terminal deletion mutants. We now present a method to determine the aggregation contact sites of proteins, using such solubilizing compounds, to design monodispersed mutants. We applied this strategy to the chemokine receptor-binding domain (CRBD) of FROUNT, which binds to the membrane-proximal C-terminal intracellular region of CCR2. Initially, the backbone NMR signals were assigned to a certain extent by available methods, and the putative locations of five α-helices were identified. Based on NMR chemical shift perturbations upon varying the protein concentrations, the first and third helices were found to contain the aggregation contact sites. The two helices are amphiphilic, and based on an NMR titration with 1,6-hexanediol, a CRBD solubilizing compound, the contact sites were identified as the hydrophobic patches located on the hydrophilic sides of the two helices. Subsequently, we designed multiple mutants targeting amino acid residues on the contact sites. Based on their NMR spectra, a doubly mutated CRBD (L538E/P612S) was selected from the designed mutants, and its monodispersed nature was confirmed by other biophysical methods. We then assessed the CCR2-binding activities of the mutants. Our method is useful for the protein structural analyses, the treatment of protein aggregation diseases, and the improvement of therapeutic proteins.

Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting
Ben Niu - ,
Brian C. Mackness - ,
Jill A. Zitzewitz - ,
C. Robert Matthews - , and
Michael L. Gross *
Misfolding of Cu, Zn superoxide dismutase (SOD1) variants may lead to protein aggregation and ultimately amyotrophic lateral sclerosis (ALS). The mechanism and protein conformational changes during this process are complex and remain unclear. To study SOD1 variant aggregation at the molecular level and in solution, we chemically induced aggregation of a mutant variant (G93A SOD1) with trifluoroethanol (TFE) and used both native mass spectrometry (MS) to analyze the intact protein and fast photochemical oxidation of proteins (FPOP) to characterize the structural changes induced by TFE. We found partially unfolded G93A SOD1 monomers prior to oligomerization and identified regions of the N-terminus, C-terminus, and strands β5, β6 accountable for the partial unfolding. We propose that exposure of hydrophobic interfaces of these unstructured regions serves as a precursor to aggregation. Our results provide a possible mechanism and molecular basis for ALS-linked SOD1 misfolding and aggregation.

Reversible Oligomerization and Reverse Hydrophobic Effect Induced by Isoleucine Tags Attached at the C-Terminus of a Simplified BPTI Variant
Shigeyoshi Nakamura - ,
Md. Golam Kibria - ,
Satoru Unzai - ,
Yutaka Kuroda - , and
Shun-ichi Kidokoro *
Protein amorphous aggregation has become the focus of great attention, as it can impair the ability of cells to function properly. Here, we evaluated the effects of three peptide tags, consisting of one, three, and five consecutive isoleucines attached at the C-terminus end of a simplified bovine pancreatic trypsin inhibitor (BPTI) variant, BPTI-19A, on the thermal stability and oligomerization by circular dichroism spectrometry and differential scanning calorimetry in detail. All of the BPTI-19A variants exhibited a reversible and apparently two-state thermal transition like BPTI-19A at pH 4.7. The thermal transition of the five-isoleucine-tagged variant showed clear protein-concentration dependence, where the apparent denaturation temperature decreased as the protein concentration increased. Quantitative analysis indicated that this phenomenon originated from the presence of reversibly oligomerized (RO) states at high temperatures. The results also illustrated that the thermodynamic stability difference between the native and the monomeric denatured state in all the proteins was destabilized by the hydrophobic tags and was well explained by the reverse hydrophobic effect due to the tags. The existence of the RO states was confirmed by both analytical ultracentrifugation and dynamic light scattering. This indicated that the five-isoleucine hydrophobic tag is strong enough to induce intermolecular hydrophobic contact among the denatured molecules leading to oligomerization, and even one- or three-isoleucine tags are effective enough to generate intramolecular hydrophobic contact, thus provoking denaturation through the reverse hydrophobic effect.

Engineering of a Brighter Variant of the FusionRed Fluorescent Protein Using Lifetime Flow Cytometry and Structure-Guided Mutations
Srijit Mukherjee - ,
Sheng-Ting Hung - ,
Nancy Douglas - ,
Premashis Manna - ,
Connor Thomas - ,
Annika Ekrem - ,
Amy E. Palmer - , and
Ralph Jimenez *
The development of fluorescent proteins (FPs) has revolutionized biological imaging. FusionRed, a monomeric red FP (RFP), is known for its low cytotoxicity and correct localization of target fusion proteins in mammalian cells but is limited in application by low fluorescence brightness. We report a brighter variant of FusionRed, “FR-MQV,” which exhibits an extended fluorescence lifetime (2.8 ns), enhanced quantum yield (0.53), higher extinction coefficient (∼140 000 M–1 cm–1), increased radiative rate constant, and reduced nonradiative rate constant with respect to its precursor. The properties of FR-MQV derive from three mutations—M42Q, C159V, and the previously identified L175M. A structure-guided approach was used to identify and mutate candidate residues around the para-hydroxyphenyl and the acylimine sites of the chromophore. The C159V mutation was identified via lifetime-based flow cytometry screening of a library in which multiple residues adjacent to the para-hydroxyphenyl site of the chromophore were mutated. The M42Q mutation is located near the acylimine moiety of the chromophore and was discovered using site-directed mutagenesis guided by X-ray crystal structures. FR-MQV exhibits a 3.4-fold higher molecular brightness and a 5-fold increase in the cellular brightness in HeLa cells [based on fluorescence-activated cell sorting (FACS)] compared to FusionRed. It also retains the low cytotoxicity and high-fidelity localization of FusionRed, as demonstrated through assays in mammalian cells. These properties make FR-MQV a promising template for further engineering into a new family of RFPs.

An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA
Tianze Zhang - ,
Kjetil Hansen - ,
Argyris Politis - , and
Manuel M. Müller *
This publication is Open Access under the license indicated. Learn More
Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered “molecular wear-and-tear”, destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to “mature” via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.

A Binary Arginine Methylation Switch on Histone H3 Arginine 2 Regulates Its Interaction with WDR5
Benjamin M. Lorton - ,
Rajesh K. Harijan - ,
Emmanuel S. Burgos - ,
Jeffrey B. Bonanno - ,
Steven C. Almo - , and
David Shechter *
Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by “writers” of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic “reader” protein that interacts with H3R2. Previous studies suggested that H3R2me2s specified a high-affinity interaction with WDR5. However, our prior biological data prompted the hypothesis that WDR5 may also interact with H3R2me1. Here, using highly accurate quantitative binding analysis combined with high-resolution crystal structures of WDR5 in complex with unmodified (me0) and me1/me2s l-arginine amino acids and in complex with the H3R2me1 peptide, we provide a rigorous biochemical study and address long-standing discrepancies of this important biological interaction. Despite modest structural differences at the binding interface, our study supports an interaction model regulated by a binary arginine methylation switch: H3R2me2a prevents interaction with WDR5, whereas H3R2me0, -me1, and -me2s are equally permissive.

Identification of Zika Virus Inhibitors Using Homology Modeling and Similarity-Based Screening to Target Glycoprotein E
Stephen M. Telehany - ,
Monica S. Humby - ,
T. Dwight McGee Jr.- ,
Sean P. Riley - ,
Amy Jacobs *- , and
Robert C. Rizzo *
This publication is Open Access under the license indicated. Learn More
The World Health Organization has designated Zika virus (ZIKV) as a dangerous, mosquito-borne pathogen that can cause severe developmental defects. The primary goal of this work was identification of small molecules as potential ZIKV inhibitors that target the viral envelope glycoprotein (ZIKV E) involved in membrane fusion and viral entry. A homology model of ZIKV E containing the small molecule β-octyl glucoside (BOG) was constructed, on the basis of an analogous X-ray structure from dengue virus, and >4 million commercially available compounds were computationally screened using the program DOCK6. A key feature of the screen involved the use of similarity-based scoring to identify inhibitor candidates that make similar interaction energy patterns (molecular footprints) as the BOG reference. Fifty-three prioritized compounds underwent experimental testing using cytotoxicity, cell viability, and tissue culture infectious dose 50% (TCID50) assays. Encouragingly, relative to a known control (NITD008), six compounds were active in both the cell viability assay and the TCID50 infectivity assay, and they showed activity in a third caspase activity assay. In particular, compounds 8 and 15 (tested at 25 μM) and compound 43 (tested at 10 μM) appeared to provide significant protection to infected cells, indicative of anti-ZIKV activity. Overall, the study highlights how similarity-based scoring can be leveraged to computationally identify potential ZIKV E inhibitors that mimic a known reference (in this case BOG), and the experimentally verified hits provide a strong starting point for further refinement and optimization efforts.

Harnessing Environmental Ca2+ for Extracellular Protein Thermostabilization
Malin J. Allert - and
Homme W. Hellinga *
Ca2+ is the third-most prevalent metal ion in the environment. EF hands are common Ca2+-binding motifs found in both extracellular and intracellular proteins of eukaryotes and prokaryotes. Cytoplasmic EF hand proteins often mediate allosteric control of signal transduction pathway components in response to intracellular Ca2+ concentration fluctuations by coupling Ca2+ binding to changes in protein structure. We show that an extracellular structural Ca2+-binding site mediates protein thermostabilization by such conformational coupling as well. Binding Ca2+ to the EF hand of the extracellular (periplasmic) Escherichia coli glucose–galactose binding protein thermostabilizes this protein by ∼17 K relative to its Ca2+-free form. Using statistical thermodynamic analysis of a fluorescent conjugate of ecGGBP that reports simultaneously on ligand binding and multiple conformational states, we found that its Ca2+-mediated stabilization is determined by conformational coupling mechanisms in two independent conformational exchange reactions. Binding to folded and unfolded states determines the maximum Ca2+-mediated stability. A disorder → order transition accompanies the formation of the Ca2+ complex in the folded state and dictates the minimum Ca2+ concentration at which the Ca2+-bound state becomes dominant. Similar transitions also encode the structural changes necessary for Ca2+-mediated control elements in signal transduction pathways. Ca2+-mediated thermostabilization and allosteric control, therefore, share a fundamental conformational coupling mechanism, which may have implications for the evolution of EF hands.

Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV-2 Main Protease
Thomas J. Cross - ,
Gemma R. Takahashi - ,
Elizabeth M. Diessner - ,
Marquise G. Crosby - ,
Vesta Farahmand - ,
Shannon Zhuang - ,
Carter T. Butts *- , and
Rachel W. Martin *
This publication is Open Access under the license indicated. Learn More
The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.

Using Eukaryotic Expression Systems to Generate Human α1,3-Fucosyltransferases That Effectively Create Selectin-Binding Glycans on Stem Cells
Asma S. Al-Amoodi - ,
Kosuke Sakashita - ,
Amal J. Ali - ,
Ruoyu Zhou - ,
Jae Man Lee *- ,
Muhammad Tehseen - ,
Mo Li - ,
Juan Carlos I. Belmonte - ,
Takahiro Kusakabe - , and
Jasmeen S. Merzaban *
Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.

Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides
Alex T. Müller - ,
Gernot Posselt - ,
Gisela Gabernet - ,
Claudia Neuhaus - ,
Simon Bachler - ,
Markus Blatter - ,
Bernhard Pfeiffer - ,
Jan A. Hiss - ,
Petra S. Dittrich - ,
Karl-Heinz Altmann - ,
Silja Wessler - , and
Gisbert Schneider *
This publication is Open Access under the license indicated. Learn More
Naturally occurring membranolytic antimicrobial peptides (AMPs) are rarely cell-type selective and highly potent at the same time. Template-based peptide design can be used to generate AMPs with improved properties de novo. Following this approach, 18 linear peptides were obtained by computationally morphing the natural AMP Aurein 2.2d2 GLFDIVKKVVGALG into the synthetic model AMP KLLKLLKKLLKLLK. Eleven of the 18 chimeric designs inhibited the growth of Staphylococcus aureus, and six peptides were tested and found to be active against one resistant pathogenic strain or more. One of the peptides was broadly active against bacterial and fungal pathogens without exhibiting toxicity to certain human cell lines. Solution nuclear magnetic resonance and molecular dynamics simulation suggested an oblique-oriented membrane insertion mechanism of this helical de novo peptide. Temperature-resolved circular dichroism spectroscopy pointed to conformational flexibility as an essential feature of cell-type selective AMPs.
Mastheads
Issue Editorial Masthead
This publication is free to access through this site. Learn More
Issue Publication Information
This publication is free to access through this site. Learn More