
About the Cover:
The cover art illustrates how formulation controls protein stability. This abstract representation depicts the influence of components within a formulation, specifically pH, charged ions, and sugar-based excipients, on the protein’s conformational state and self-association behavior.
Advances in Biophysical and Bioanalytical Protein Characterization Editorial
Advances in Biophysical and Bioanalytical Protein Characterization
Jennifer S. Laurence *
This publication is free to access through this site. Learn More
Reviews

Advancements in High Throughput Biophysical Technologies: Applications for Characterization and Screening during Early Formulation Development of Monoclonal Antibodies
Hardeep S. Samra *- and
Feng He *
The formulation development of monoclonal antibodies is extremely challenging, due to the diversity and complexity contained within this class of molecules. The physical and chemical properties of a monoclonal antibody dictate the behavior of the protein drug during manufacturing, storage and clinical administration. In the past few years, the use of high throughput technologies has been widely adapted to delineate unique properties of individual immunoglobulin G’s (IgG’s) important for their development. Numerous screening techniques have been designed to reveal physical and chemical characteristics of a protein relevant to stability under production, formulation and delivery conditions. In addition, protein stability under accelerated stresses has been utilized to predict long-term storage behavior for monoclonal antibodies in the formulation. In this review, we summarize the recent advancements in the field of biophysical technology, with a specific focus on the techniques that can be directly applied to the formulation development of monoclonal antibodies. Several case studies are also presented here to provide examples of combining existing biophysical methods with high throughput screening technology in the formulation development of monoclonal antibody drugs.

Antimicrobial Properties of Amyloid Peptides
Bruce L. Kagan *- ,
Hyunbum Jang - ,
Ricardo Capone - ,
Fernando Teran Arce - ,
Srinivasan Ramachandran - ,
Ratnesh Lal *- , and
Ruth Nussinov *
More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand–turn−β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids not only are toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function.
Articles

Localized Hydration in Lyophilized Myoglobin by Hydrogen–Deuterium Exchange Mass Spectrometry. 1. Exchange Mapping
Andreas M. Sophocleous - ,
Jun Zhang - , and
Elizabeth M. Topp *
The local effects of hydration on myoglobin (Mb) in solid matrices containing mannitol or sucrose (1:1 w/w, protein:additive) were mapped using hydrogen–deuterium exchange with mass spectrometric analysis (HDX–MS) at 5 °C and compared to solution controls. Solid powders were exposed to D2O(g) at controlled activity (aw) followed by reconstitution and analysis of the intact protein and peptides produced by pepsin digestion. HDX varied with matrix type, aw, and position along the protein backbone. HDX was less in sucrose matrices than in mannitol matrices at all aw while the difference in solution was negligible. Differences in HDX in the two matrices were detectable despite similarities in their bulk water content. The extent of exchange in solids is proposed as a measure of the hydration of exchangeable amide groups, as well as protein conformation and dynamics; pepsin digestion allows these effects to be mapped with peptide-level resolution.

Localized Hydration in Lyophilized Myoglobin by Hydrogen–Deuterium Exchange Mass Spectrometry. 2. Exchange Kinetics
Andreas M. Sophocleous - and
Elizabeth M. Topp *
Solid-state hydrogen–deuterium exchange with mass spectrometric analysis (ssHDX) is a promising method for characterizing proteins in amorphous solids. Though analysis of HDX kinetics is informative and well-established in solution, application of these methods to solid samples is complicated by possible heterogeneities in the solid. The studies reported here provide a detailed analysis of the kinetics of hydration and ssHDX for equine myoglobin (Mb) in solid matrices containing sucrose or mannitol. Water sorption was rapid relative to ssHDX, indicating that ssHDX kinetics was not limited by bulk water transport. Deuterium uptake in solids was well-characterized by a biexponential model; values for regression parameters provided insight into differences between the two solid matrices. Analysis of the widths of peptide mass envelopes revealed that, in solution, an apparent EX2 mechanism prevails, consistent with native conformation of the protein. In contrast, in mannitol-containing samples, a smaller non-native subpopulation exchanges by an EX1-like mechanism. Together, the results indicate that the analysis of ssHDX kinetic data and of the widths of peptide mass envelopes is useful in screening solid formulations of protein drugs for the presence of non-native species that cannot be detected by amide I FTIR.

Mapping Site-Specific Changes That Affect Stability of the N-Terminal Domain of Calmodulin
Mary E. Krause - ,
Talia T. Martin - , and
Jennifer S. Laurence *
Biophysical tools have been invaluable in formulating therapeutic proteins. These tools characterize protein stability rapidly in a variety of solution conditions, but in general, the techniques lack the ability to discern site-specific information to probe how solution environment acts to stabilize or destabilize the protein. NMR spectroscopy can provide site-specific information about subtle structural changes of a protein under different conditions, enabling one to assess the mechanism of protein stabilization. In this study, NMR was employed to detect structural perturbations at individual residues as a result of altering pH and ionic strength. The N-terminal domain of calmodulin (N-CaM) was used as a model system, and the 1H–15N heteronuclear single quantum coherence (HSQC) experiment was used to investigate effects of pH and ionic strength on individual residues. NMR analysis revealed that different solution conditions affect individual residues differently, even when the amino acid sequence and structure are highly similar. This study shows that addition of NMR to the formulation toolbox has the ability to extend understanding of the relationship between site-specific changes and overall protein stability.

Solution pH That Minimizes Self-Association of Three Monoclonal Antibodies Is Strongly Dependent on Ionic Strength
Shantanu V. Sule - ,
Jason K. Cheung - ,
Valentyn Antochshuk - ,
Amardeep S. Bhalla - ,
Chakravarthy Narasimhan - ,
Steven Blaisdell - ,
Mohammed Shameem - , and
Peter M. Tessier *
Monoclonal antibodies display highly variable solution properties such as solubility and viscosity at elevated concentrations (>50 mg/mL), which complicates antibody formulation and delivery. To understand this complex behavior, it is critical to measure the underlying protein self-interactions that govern the solution properties of antibody suspensions. We have evaluated the pH-dependent self-association behavior of three monoclonal antibodies using self-interaction chromatography for a range of pH values commonly used in antibody formulations (pH 4.4–6). At low ionic strength (<25 mM), we find that each antibody is more associative at near-neutral pH (pH 6) than at low pH (pH 4.4). At high ionic strength (>100 mM), we observe the opposite pH-dependent pattern of antibody self-association. Importantly, this inversion in self-association behavior is not unique to multidomain antibodies, as similar pH-dependent behavior is observed for some small globular proteins (e.g., ribonuclease A and α-chymotrypsinogen). We also find that the opalescence of concentrated antibody solutions (90 mg/mL) is minimized at low ionic strength at pH 4.4 and high ionic strength at pH 6, in agreement with the self-interaction measurements conducted at low antibody concentrations (5 mg/mL). Our results highlight the complexity of antibody self-association and emphasize the need for systematic approaches to optimize the solution properties of concentrated antibody formulations.

Bicelles at Low Concentrations
Zhenwei Lu - ,
Wade D. Van Horn - ,
Jiang Chen - ,
Sijo Mathew - ,
Roy Zent - , and
Charles R. Sanders *
Bilayered detergent–lipid assemblies known as bicelles have been widely used as model membranes in structural biological studies and are being explored for wider applications, including pharmaceutical use. Most studies to date have involved the use of concentrated bicelle mixtures, such that little is known about the capacity of bicellar mixtures to be diluted without unwanted transitions to nonisotropic phases. Here, different detergent/lipid mixtures have been explored, leading to the identification of two different families of bicelles for which it is possible to lower the total amphiphile (detergent + lipid) concentration to <1% (w/v) while retaining isotropic assemblies. These include a novel family of bicelles based on mixtures of 6-cyclohexyl-1-hexylphosphocholine (Cyclofos-6) and the lipid dimyristoylphosphatidylcholine (DMPC). Bicelles formed by these mixtures can be diluted to <0.5% and also have attractive biochemical properties. However, a caveat of our results is that the diffusion coefficients measured for the lipid component of the different bicelles tested were seen to be dependent on sample history, even though all samples were optically transparent. This suggests that the phase behavior of bicelles at low lipid-to-detergent ratios may be more complex than previously appreciated.

Effect of PEGylation on Protein Hydrodynamics
Yatin R. Gokarn *- ,
Matthew McLean - , and
Thomas M. Laue *
We studied the effect of PEGylation on protein hydrodynamic behavior using hen egg-white lysozyme (HEWL) as a model protein. HEWL was PEGylated with a linear, 20 kDa PEG using reductive amination to produce PEG1-, PEG2-, and PEG3-HEWL. Near- and far-UV–CD spectroscopy revealed no significant effect of PEGylation on HEWL higher order structure. SDS–PAGE, mass spectrometry, online static light scattering (SLS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were employed to characterize the heterogeneity and molecular weights of the purified PEG-HEWL molecules, the results of which underscored the importance of using first-principle based methods for such analyses along with the underlying complexities of characterizing PEG–protein conjugates. Hydrodynamic characterization of various linear and branched PEGs (5–40 kDa) and PEG-HEWL molecules was performed using dynamic light scattering (DLS) and SV-AUC. The PEG polymer exhibited a random-coil conformation in solution with the Mw ∝ Rhn scaling relationship yielding a scaling exponent (n) = 2.07. Singly branched PEGs were also observed to exhibit random-coil behavior with Stokes radii identical to those of their linear counterparts. SV-AUC studies of PEG-HEWL showed PEG has a “parachute” like effect on HEWL, and dramatically increases the frictional drag; PEG-HEWL also exhibited random-coil-like characteristics in solution (n = 1.8). The sedimentation coefficient (s) of PEG-HEWL remained invariant with increasing degree of PEGylation, indicating that the increase in molecular mass from PEG was compensated by an almost equivalent increase in frictional drag. Our studies draw caution to using SV-AUC for the characterization of size heterogeneity of PEG–protein mixtures.

Effect of pH and Light on Aggregation and Conformation of an IgG1 mAb
Bruce D. Mason - ,
Christian Schöneich - , and
Bruce A. Kerwin *
During the purification process, monoclonal antibodies may be exposed to parts of UV-C (200 to 290 nm), UV-B (290 to 320 nm) and visible light (400 to 760 nm) under a variety of buffer and pH conditions. Together, these conditions can promote both chemical and physical degradation which may result in conformational changes. To examine this possibility, an IgG1 mAb at pH 3.5, 5, and 8 was exposed to UV light at multiple protein concentrations. Exposure to 302 nm light resulted in a pH-dependent formation of high molecular weight species where the degree of oligomerization increased with increasing pH. Characterization by SDS–PAGE under reducing and nonreducing conditions and size exclusion MALS revealed that the predominant species were nonreducible dimeric, trimeric and higher order oligomeric species which occurred through processes other than intermolecular disulfide bond formation. Biophysical characterization by differential scanning calorimetry demonstrated an overall loss of heat capacity suggesting a loss of conformational integrity with light exposure. A decrease in tryptophan fluorescence was paralleled by a significant decrease in the transition temperature measured during heat-induced unfolding following light exposure, also suggesting a significant change in conformational integrity. The observations by fluorescence spectroscopy coincided with pH-dependent changes in the alterations of secondary structure characterized by Fourier transform infrared spectroscopy and far-UV circular dichroism with the most acidic pH showing the greatest degree of change in the β-sheet structure. Exposure to UV light resulted in aggregation with pH-dependent yields decreasing in the order 8.0 > 5.0 > 3.5, while the opposite trend was observed for conformational changes, with pH-dependent extents decreasing in the following order 3.5 > 5.0 > 8.0. These pH-dependent trends suggest that different strategies will be required to stabilize the protein against these modifications during processing.

The Influence of Charge Distribution on Self-Association and Viscosity Behavior of Monoclonal Antibody Solutions
Sandeep Yadav - ,
Thomas M. Laue - ,
Devendra S. Kalonia - ,
Shubhadra N. Singh - , and
Steven J. Shire *
The present work investigates the influence of electrostatic surface potential distribution of monoclonal antibodies (MAbs) on intermolecular interactions and viscosity. Electrostatic models suggest MAb-1 has a less uniform surface charge distribution than MAb-2. The patches of positive and negative potential on MAb-1 are predicted to favor intermolecular attraction, even in the presence of a small net positive charge. Consistent with this expectation, MAb-1 exhibits a negative second virial coefficient (B22), an increase in static structure factor, S(q→0), and a decrease in hydrodynamic interaction parameter, H(q→0), with increase in MAb-1 concentration. Conversely, MAb-2 did not show such heterogeneous charge distribution as MAb-1 and hence favors intermolecular repulsion (positive B22), lower static structure factor, S(q→0), and repulsion induced increase in momentum transfer, H(q→0), to result in lower viscosity of MAb-2. Charge swap mutants of MAb-1, M-5 and M-7, showed a decrease in charge asymmetry and concomitantly a loss in self-associating behavior and lower viscosity than MAb-1. However, replacement of charge residues in the sequence of MAb-2, M-10, did not invoke charge distribution to the same extent as MAb-1 and hence exhibited a similar viscosity and self-association profile as MAb-2.

Oxidation of Human Growth Hormone by Oxygen-Centered Radicals: Formation of Leu-101 Hydroperoxide and Tyr-103 Oxidation Products
Daniel Steinmann - ,
J. Andrea Ji - ,
Y. John Wang - , and
Christian Schöneich *
Human growth hormone (hGH) was exposed to oxygen-centered radicals generated through the thermolysis of AAPH in the presence of dioxygen. Such conditions mimic oxidative processes which protein pharmaceuticals can encounter during formulation in the presence of polysorbates. We detected the oxidation of Met to Met sulfoxide, the formation of protein carbonyls, the oxidation of Tyr to dityrosine and several additional Tyr oxidation products, the conformation-dependent oxidation of Trp, and the site-specific formation of protein hydroperoxides. The sensitivity of Met oxidation correlates with their solvent accessible surface, i.e. the yields of MetSO decreased in the order Met-14 > Met-125 > Met-170. Trp oxidation in native hGH was negligible, but was enhanced through denaturation. Dityrosine formed predominantly intramolecularly but did not contribute significantly to protein cross-linking. Hydroperoxides formed selectively on Leu-101 and were generated specifically by alkoxyl radicals, generated through the decomposition of peroxyl radicals. Tyr-103 was converted into a series of oxidation products characterized by mass shifts of Tyr + 14 Da and Tyr + 16 Da.

Provisional Biopharmaceutical Classification of Some Common Herbs Used in Western Medicine
Sarah Waldmann - ,
May Almukainzi - ,
Nadia Araci Bou-Chacra - ,
Gordon L. Amidon - ,
Beom-Jin Lee - ,
Jianfang Feng - ,
Isadore Kanfer - ,
Joan Zhong Zuo - ,
Hai Wei - ,
Michael B. Bolger - , and
Raimar Löbenberg *
The aim of this study was to classify some markers of common herbs used in Western medicine according to the Biopharmaceutical Classification System (BCS). The BCS is a scientific approach to classify drug substances based upon their intestinal permeability and their solubility, at the highest single dose used, within the physiologically relevant pH ranges. Known marker components of twelve herbs were chosen from the USP Dietary Supplement Compendium Monographs. Different BCS parameters such as intestinal permeability (Peff) and solubility (Cs) were predicted using the ADMET Predictor, which is a software program to estimate biopharmaceutical relevant molecular descriptors. The dose number (D0) was calculated when information from the literature was available to identify an upper dose for individual markers. In these cases the herbs were classified according to the traditional BCS parameters using Peff and D0. When no upper dose could be determined, then the amount of a marker that is just soluble in 250 mL of water was calculated. This value, Mx, defines when a marker is changing from highly soluble to poorly soluble according to BCS criteria. This biopharmaceutically relevant value can be a useful tool for marker selection. The present study showed that a provisional BCS classification of herbs is possible but some special considerations need to be included into the classification strategy. The BCS classification can be used to choose appropriate quality control tests for products containing these markers. A provisional BCS classification of twelve common herbs and their 35 marker compounds is presented.

The Pharmacokinetics and Hepatic Disposition of Repaglinide in Pigs: Mechanistic Modeling of Metabolism and Transport
Erik Sjögren - ,
Ulf Bredberg - , and
Hans Lennernäs *
The predictive power of using in vitro systems in combination with physiologically based pharmacokinetic (PBPK) modeling to elucidate the relative importance of metabolism and carrier-mediated transport for the pharmacokinetics was evaluated using repaglinide as a model compound and pig as the test system. Repaglinide was chosen as model drug as previous studies in humans have shown that repaglinide is subject to both carrier-mediated influx to the liver cells and extensive hepatic metabolism. A multiple sampling site model in pig was chosen since it provides detailed in vivo information about the liver disposition. The underlying assumption was that both metabolism and carrier-mediated transport are also important for the hepatic disposition of repaglinide in pigs. Microsomes and primary hepatocytes were used for in vitro evaluation of enzyme kinetics and cellular disposition, respectively. In vitro data were generated both with and without metabolism inhibitors (ketoconazole, bezafibrate and trimethoprim) and transport inhibitors (diclofenac and quinine) providing input into a semi-PBPK model. In vivo data were also generated with and without the same enzyme and transporter inhibitors, alone and in combination. The pigs were given repaglinide as intravenous infusions with and without inhibitors in a sequential manner, i.e., a control phase and a test phase. Parameters describing the passive and carrier-mediated flux as well as metabolism were estimated in the control phase. The result from test phase was used to gain further knowledge of the findings from the control phase. The in vivo pig model enabled simultaneous sampling from plasma (pre- and postliver and peripheral) as well as from bile and urine. A semi-PBPK model consisting of 11 compartments (6 tissues + 5 sampling sites) was constructed for the mechanistic elucidation of the liver disposition, in vitro based in vivo predictions, sensitivity analyses and estimations of individual pharmacokinetic parameters. Both in vitro and in vivo results showed that carrier-mediated influx was important for the liver disposition. The in vivo findings were supported by the result from the test phase where hepatic clearance (4.3 mL min–1 kg–1) was decreased by 29% (metabolism inhibition), 43% (transport inhibition) and 57% (metabolism + transport inhibition). These effects were in good agreement with predicted levels. This study suggests that both metabolism and carrier-mediated uptake are of significant importance for the liver disposition of repaglinide in pigs.

Tracking Multiplex Drugs and Their Dynamics in Living Cells Using the Label-Free Surface-Enhanced Raman Scattering Technique
Jing Yang - ,
Yiping Cui - ,
Shenfei Zong - ,
Ruohu Zhang - ,
Chunyuan Song - , and
Zhuyuan Wang *
Label free and real time detection of nonfluorescent drugs inside living cells has been realized by using surface-enhanced Raman scattering (SERS). For the first time, the characteristics of 6-mercapotopurine and methimazole, two different drugs, were monitored simultaneously by SERS in living cells. Particularly, the processes of diffusion and metabolism of drugs occurring in the intracellular matrix were investigated. The results indicate that the metabolism speed of 6-mercapotopurine in living HeLa cells is much faster than that of methimazole. Moreover, the detection sensitivity of intracellular drugs has also been checked and a low detection limit of 1 nM was obtained of drug 6-mercapotopurine in a single HeLa cell.

Molecular and Cellular Targets of the MRI Contrast Agent P947 for Atherosclerosis Imaging
Tanja Ouimet - ,
Eric Lancelot - ,
Fabien Hyafil - ,
Mario Rienzo - ,
François Deux - ,
Marjorie Lemaître - ,
Sophie Duquesnoy - ,
Jérome Garot - ,
Bernard P. Roques - ,
Jean-Baptiste Michel - ,
Claire Corot - , and
Sébastien Ballet *
P947 (DOTA-Gd-peptide) was recently identified as an MRI contrast agent for the detection and characterization of the matrix metalloproteinases (MMP)-rich atherosclerotic plaques. Because this product displays a broad spectrum affinity for the MMP family, we hypothesized that it may also recognize other metalloproteinases overactivated in vulnerable atherosclerotic plaques. Therefore, this study aimed at describing, at the molecular and cellular level, the interactions between P947 and proteases of atherosclerotic plaques. Fluorimetric assays were used to measure the in vitro affinity of P947 toward recombinant and purified MMPs, angiotensin-converting enzyme (ACE), endothelin-converting enzyme (ECE-1), neutral endopeptidase (NEP), and both aminopeptidases A and N (APA and APN). Using similar fluorimetric assays associated with specific substrates, enzymatic activities were measured in vulnerable and stable plaques collected from human atherosclerotic carotid arteries. Ex vivo affinity of P947 for metalloproteinases in vulnerable lesions was subsequently determined. Interaction between P947 and major cell types present in atherosclerotic plaques was also investigated in different cell lines: PMA-1-differentiated THP-1 (macrophage), Ox-LDL-treated THP-1 (foam cell), Jurkat cell line (lymphocyte), and human umbilical vein endothelial cell (HUVEC, endothelial cell). Molecular targeting of P947 was confirmed by fluorimetry, ICP-MS, and in vitro MRI approaches. Potential application of P947 for detecting atherosclerotic plaques by in vivo MRI was tested in a rabbit model of atherosclerosis. In vitro, P947 displayed affinities for purified MMPs, ACE, ECE-1, NEP, APA, and APN in the micromolar range. Interestingly, MMPs, ACE, and APN exhibited higher activities in vulnerable plaques from human atherosclerotic carotid samples, as compared to stable plaques. ECE-1, NEP, and APA had either no activity or the same low activity in both vulnerable and stable plaques. P947 showed micromolar affinities for MMPs, ACE, and APN secreted by plaque samples. Moreover, P947 bound to THP-1 macrophages and THP-1 foam cells in a concentration-dependent manner and with a higher intensity than the control contrast agents DOTA-Gd or P1135 (DOTA-Gd coupled to a scrambled peptide). In THP-1 macrophages, P947 inhibited largely (70%) and almost completely (95%) MMP and APN activities, respectively, which strongly suggested an MMP- and APN-dependent binding of P947 to these cells. This enzyme-specific binding was confirmed with in vitro MRI. Indeed, the T1 value of THP-1 cells decreased from 2.094 s (macrophages w/o P947) to 2.004 s (macrophages with 1 mM of P947). In addition, the Gd content measured by ICP-MS was 11.01 ± 1.05 fg Gd/macrophage when cells were incubated in the presence of P947 and only 5.18 ± 0.43 fg Gd/macrophage with the control product P1135. The difference of Gd concentration between both contrast agents corresponded to a specific accumulation of 5.83 fg Gd/cell, which may be detected by MRI. MR imaging in the atherosclerosis rabbit model showed enhancement of the aortic wall after P947 injection with a significant increase of CNR values from 0.21 ± 0.02 (before injection) to 0.37 ± 0.07 (after injection), demonstrating the efficacy of the contrast agent to detect the atherosclerotic plaques in vivo. Taken together, these data suggest that P947 may be an interesting contrast agent for in vivo molecular MR imaging of MMPs, ACE, and APN activities present in vulnerable atherosclerotic plaques.

SULT1A3-Mediated Regiospecific 7-O-Sulfation of Flavonoids in Caco-2 Cells Can Be Explained by the Relevant Molecular Docking Studies
Shengnan Meng - ,
Baojian Wu - ,
Rashim Singh - ,
Taijun Yin - ,
John Kenneth Morrow - ,
Shuxing Zhang - , and
Ming Hu *
Flavonoids are polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5′-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 monohydroxyl flavonoids with a −OH group at the 3, 4′, 5 or 7 position, followed by 5 dihydroxyl flavonoids, and 2 trihydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at the 7-OH position in Caco-2 cell lysates with minor amounts of 4′-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 μM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells.

Amphiphilic Polyanhydride Nanoparticles Stabilize Bacillus anthracis Protective Antigen
L. K. Petersen - ,
Y. Phanse - ,
A. E. Ramer-Tait - ,
M.J. Wannemuehler - , and
B. Narasimhan *
Advancements toward an improved vaccine against Bacillus anthracis, the causative agent of anthrax, have focused on formulations composed of the protective antigen (PA) adsorbed to aluminum hydroxide. However, due to the labile nature of PA, antigen stability is a primary concern for vaccine development. Thus, there is a need for a delivery system capable of preserving the immunogenicity of PA through all the steps of vaccine fabrication, storage, and administration. In this work, we demonstrate that biodegradable amphiphilic polyanhydride nanoparticles, which have previously been shown to provide controlled antigen delivery, antigen stability, immune modulation, and protection in a single dose against a pathogenic challenge, can stabilize and release functional PA. These nanoparticles demonstrated polymer hydrophobicity-dependent preservation of the biological function of PA upon encapsulation, storage (over extended times and elevated temperatures), and release. Specifically, fabrication of amphiphilic polyanhydride nanoparticles composed of 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane best preserved PA functionality. These studies demonstrate the versatility and superiority of amphiphilic nanoparticles as vaccine delivery vehicles suitable for long-term storage.

The Involvement of a Na+- and Cl–-Dependent Transporter in the Brain Uptake of Amantadine and Rimantadine
Sander A. A. Kooijmans - ,
Danielle Senyschyn - ,
Muguntha M. Mezhiselvam - ,
Julia Morizzi - ,
Susan A. Charman - ,
Babette Weksler - ,
Ignacio-Andres Romero - ,
Pierre-Olivier Couraud - , and
Joseph A. Nicolazzo *
Despite their structural similarity, the two anti-influenza adamantane compounds amantadine (AMA) and rimantadine (RIM) exhibit strikingly different rates of blood–brain barrier (BBB) transport. However, the molecular mechanisms facilitating the higher rate of in situ BBB transport of RIM, relative to AMA, remain unclear. The aim of this study, therefore, was to determine whether differences in the extent of brain uptake between these two adamantanes also occurred in vivo, and elucidate the potential carrier protein facilitating their BBB transport using immortalized human brain endothelial cells (hCMEC/D3). Following oral administration to Swiss Outbred mice, RIM exhibited 2.4–3.0-fold higher brain-to-plasma exposure compared to AMA, which was not attributable to differences in the degree of plasma protein binding. At concentrations representative of those obtained in vivo, the hCMEC/D3 cell uptake of RIM was 4.5–15.7-fold higher than that of AMA, with Michaelis–Menten constants 6.3 and 238.4 μM, respectively. The hCMEC/D3 cellular uptake of both AMA and RIM was inhibited by various cationic transporter inhibitors (cimetidine, choline, quinine, and tetraethylammonium) and was dependent on extracellular pH, membrane depolarization and Na+ and Cl– ions. Such findings indicated the involvement of the neutral and cationic amino acid transporter B0,+ (ATB0,+) in the uptake of AMA and RIM, which was demonstrated to be expressed (at the protein level) in the hCMEC/D3 cells. Indeed, AMA and RIM appeared to interact with this transporter, as shown by a 53–70% reduction in the hCMEC/D3 uptake of the specific ATB0,+ substrate 3H-glycine in their presence. These studies suggest the involvement of ATB0,+ in the disposition of these cationic drugs across the BBB, a transporter with the potential to be exploited for targeted drug delivery to the brain.

Enhancement of Amorphous Celecoxib Stability by Mixing It with Octaacetylmaltose: The Molecular Dynamics Study
K. Grzybowska *- ,
M. Paluch - ,
P. Wlodarczyk - ,
A. Grzybowski - ,
K. Kaminski - ,
L. Hawelek - ,
D. Zakowiecki - ,
A. Kasprzycka - , and
I. Jankowska-Sumara
In this paper, we present a novel way of stabilization of amorphous celecoxib (CEL) against recrystallization by preparing binary amorphous celecoxib–octaacetylmaltose (CEL–acMAL) systems by quench-cooling of the molten phase. As far as we know this is the first application of carbohydrate derivatives with acetate groups to enhance the stability of an amorphous drug. We found that CEL in the amorphous mixture with acMAL is characterized by a much better solubility than pure CEL. We report very promising results of the long-term measurements of stability of the CEL–acMAL binary amorphous system with small amount of stabilizer during its storage at room temperature. Moreover, we examined the effect of adding acMAL on molecular dynamics of CEL in the wide temperature range in both the supercooled liquid and glassy states. We found that the molecular mobility of the mixture of CEL with 10 wt % acMAL in the glassy state is much more limited than that in the case of pure CEL, which correlates with the better stability of the amorphous binary system. By dielectric measurements and theoretical calculations within the framework of density functional theory (DFT), we studied the role of acMAL in enhancing the stability of amorphous CEL in mixtures and postulated which interactions between CEL and acMAL molecules can be responsible for preventing devitrification.

A Substrate Pharmacophore for the Human Organic Cation/Carnitine Transporter Identifies Compounds Associated with Rhabdomyolysis
Sean Ekins *- ,
Lei Diao - , and
James E. Polli
The human organic cation/carnitine transporter (hOCTN2) is a high affinity cation/carnitine transporter expressed widely in human tissues and is physiologically important for the homeostasis of l-carnitine. The objective of this study was to elucidate the substrate requirements of this transporter via computational modeling based on published in vitro data. Nine published substrates of hOCTN2 were used to create a common feature pharmacophore that was validated by mapping other known OCTN2 substrates. The pharmacophore was used to search a drug database and retrieved molecules that were then used as search queries in PubMed for instances of a side effect (rhabdomyolysis) associated with interference with l-carnitine transport. The substrate pharmacophore was composed of two hydrogen bond acceptors, a positive ionizable feature and ten excluded volumes. The substrate pharmacophore also mapped 6 out of 7 known substrate molecules used as a test set. After searching a database of ∼800 known drugs, thirty drugs were predicted to map to the substrate pharmacophore with l-carnitine shape restriction. At least 16 of these molecules had case reports documenting an association with rhabdomyolysis and represent a set for prioritizing for future testing as OCTN2 substrates or inhibitors. This computational OCTN2 substrate pharmacophore derived from published data partially overlaps a previous OCTN2 inhibitor pharmacophore and is also able to select compounds that demonstrate rhabdomyolysis, further confirming the possible linkage between this side effect and hOCTN2.

Exploiting Evolution To Treat Drug Resistance: Combination Therapy and the Double Bind
David Basanta *- ,
Robert A. Gatenby - , and
Alexander R. A. Anderson
Although many anticancer therapies are successful in killing a large percentage of tumor cells when initially administered, the evolutionary dynamics underpinning tumor progression mean that, often, resistance is an inevitable outcome. Research in the field of ecology suggests that an evolutionary double bind could be an effective way to treat tumors. In an evolutionary double bind two therapies are used in combination such that evolving resistance to one leaves individuals more susceptible to the other. In this paper we present a general evolutionary game theory framework of a double bind to study the effect that such an approach would have in cancer. Furthermore we use this mathematical framework to understand recent experimental results that suggest a synergistic effect between a p53 cancer vaccine and chemotherapy. Our model recapitulates the latest experimental data and provides an explanation for its effectiveness based on the commensalistic relationship between the tumor phenotypes.

Involvement of Functional Groups on the Surface of Carboxyl Group-Terminated Polyamidoamine Dendrimers Bearing Arbutin in Inhibition of Na+/Glucose Cotransporter 1 (SGLT1)-Mediated d-Glucose Uptake
Shinji Sakuma *- ,
Shun Kanamitsu - ,
Yumi Teraoka - ,
Yoshie Masaoka - ,
Makoto Kataoka - ,
Shinji Yamashita - ,
Yoshiyuki Shirasaka - ,
Ikumi Tamai - ,
Masahiro Muraoka - ,
Yohji Nakatsuji - ,
Toshiyuki Kida - , and
Mitsuru Akashi *
A carboxyl group-terminated polyamidoamine dendrimer (generation: 3.0) bearing arbutin, which is a substrate of Na+/glucose cotransporter 1 (SGLT1), via a nonbiodegradable ω-amino triethylene glycol linker (PAMAM-ARB), inhibits SGLT1-mediated d-glucose uptake, as does phloridzin, which is a typical SGLT1 inhibitor. Here, since our previous research revealed that the activity of arbutin was dramatically improved through conjugation with the dendrimer, we examined the involvement of functional groups on the dendrimer surface in inhibition of SGLT1-mediated d-glucose uptake. PAMAM-ARB, with a 6.25% arbutin content, inhibited in vitro d-glucose uptake most strongly; the inhibitory effect decreased as the arbutin content increased. In vitro experiments using arbutin-free original dendrimers indicated that dendrimer-derived carboxyl groups actively participated in SGLT1 inhibition. However, the inhibitory effect was much less than that of PAMAM-ARB and was equal to that of glucose moiety-free PAMAM-ARB. Data supported that the glucose moiety of arbutin was essential for the high activity of PAMAM-ARB in SGLT1 inhibition. Analysis of the balance of each domain further suggested that carboxyl groups anchored PAMAM-ARB to SGLT1, and the subsequent binding of arbutin-derived glucose moieties to the target sites on SGLT1 resulted in strong inhibition of SGLT1-mediated d-glucose uptake.

Raman Microscopy for Noninvasive Imaging of Pharmaceutical Nanocarriers: Intracellular Distribution of Cationic Liposomes of Different Composition
T. Chernenko *- ,
R. R. Sawant - ,
M. Miljkovic - ,
L. Quintero - ,
M. Diem - , and
V. Torchilin
Nanotechnology is playing an increasing role in targeted drug delivery into pathological tissues. Drug-loaded pharmaceutical nanocarriers can be delivered into diseased sites by passive targeting (spontaneous accumulation of nanocarriers in the areas with affected vasculature) or by active targeting (via site-specific ligands attached to the surface of drug-loaded nanocarriers). Subsequent level of targeting requires cellular internalization of nanocarriers and their specific association with certain individual cell organelles. The control over intracellular distribution of pharmaceutical nanocarriers requires effective and noninvasive methods of their visualization inside cells. In an attempt to enhance cellular internalization of pharmaceutical nanocarriers and their association with mitochondria specifically, we have prepared three types of cationic liposomes and investigated their intracellular distribution. The analysis was performed using Raman microspectroscopy in order to provide morphological information as well as biochemical signatures of the sample. It was demonstrated that Raman microscopy allows evaluation of the extent of mitochondrial association depending on the liposome composition.

Mucoadhesive Fenretinide Patches for Site-Specific Chemoprevention of Oral Cancer: Enhancement of Oral Mucosal Permeation of Fenretinide by Coincorporation of Propylene Glycol and Menthol
Xiao Wu - ,
Kashappa-Goud H. Desai - ,
Susan R. Mallery - ,
Andrew S. Holpuch - ,
Maynard P. Phelps - , and
Steven P. Schwendeman *
The objective of this study was to enhance oral mucosal permeation of fenretinide by coincorporation of propylene glycol (PG) and menthol in fenretinide/Eudragit RL PO mucoadhesive patches. Fenretinide is an extremely hydrophobic chemopreventive compound with poor tissue permeability. Coincorporation of 5–10 wt % PG (mean Js = 16–23 μg cm–2 h–1; 158–171 μg of fenretinide/g of tissue) or 1–10 wt % PG + 5 wt % menthol (mean Js = 18–40 μg cm–2 h–1; 172–241 μg of fenretinide/g of tissue) in fenretinide/Eudragit RL PO patches led to significant ex vivo fenretinide permeation enhancement (p < 0.001). Addition of PG above 2.5 wt % in the patch resulted in significant cellular swelling in the buccal mucosal tissues. These alterations were ameliorated by combining both enhancers and reducing PG level. After buccal administration of patches in rabbits, in vivo permeation of fenretinide across the oral mucosa was greater (∼43 μg fenretinide/g tissue) from patches that contained optimized permeation enhancer content (2.5 wt % PG + 5 wt % menthol) relative to permeation obtained from enhancer-free patch (∼17 μg fenretinide/g tissue) (p < 0.001). In vitro and in vivo release of fenretinide from patch was not significantly increased by coincorporation of permeation enhancers, indicating that mass transfer across the tissue, and not the patch, largely determined the permeation rate control in vivo. As a result of its improved permeation and its lack of deleterious local effects, the mucoadhesive fenretinide patch coincorporated with 2.5 wt % PG + 5 wt % menthol represents an important step in the further preclinical evaluation of oral site-specific chemoprevention strategies with fenretinide.

Dendritic Cell Targeted Chitosan Nanoparticles for Nasal DNA Immunization against SARS CoV Nucleocapsid Protein
Dharmendra Raghuwanshi - ,
Vivek Mishra - ,
Dipankar Das - ,
Kamaljit Kaur *- , and
Mavanur R. Suresh
This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.

Zidovudine and Ursodeoxycholic Acid Conjugation: Design of a New Prodrug Potentially Able To Bypass the Active Efflux Transport Systems of the Central Nervous System
Alessandro Dalpiaz - ,
Guglielmo Paganetto - ,
Barbara Pavan *- ,
Marco Fogagnolo - ,
Alessandro Medici - ,
Sarah Beggiato - , and
Daniela Perrone
We have synthesized a new prodrug obtained by the 5′-ester conjugation of zidovudine (AZT), an antiviral agent substrate of active efflux transport systems (AET), with ursodeoxycholic acid (UDCA), a bile acid able to permeate into the central nervous system (CNS). We have demonstrated, by HPLC analysis, that UDCA–AZT is quickly hydrolyzed in rat plasma and whole blood (half-life <10 s). The same compound was hydrolyzed with slower rates in human plasma (half-life =7.53 ± 0.44 h) and whole blood (half-life =3.71 ± 0.16 h), allowing to control the AZT release. UDCA–AZT appeared hydrolyzed also in rat brain (half-life = 7.24 ± 0.45 min) and liver homogenates (half-life = 2.70 ± 0.14 min). In the aim to study the permeation properties of the UDCA–AZT across physiological barriers, we have used an established human retinal pigment epithelium (HRPE) cell line to obtain a polarized cell monolayer showing epithelial features. The bidirectional permeation of 30 μM AZT across this monolayer was regulated by apparent permeability coefficients (PE) higher from the apical to basolateral compartments (PE = 209 ± 4 × 10–5 cm/min) than in the opposite way (PE = 133 ± 8 × 10–5 cm/min), in conformity with the in vivo behavior of AZT, actively effluxed from the CNS. The influx (PE = 39.1 ± 1.2 × 10–5 cm/min) and efflux (PE = 31.3 ± 3.6 × 10–5 cm/min) permeability coefficients of 30 μM UDCA–AZT were instead the same, suggesting the ability of the prodrug to avoid the AET systems and, potentially, to allow its accumulation in the CNS. The relatively low PE values of UDCA–AZT were associated with a partial hydrolysis during its permeation across the cell monolayer.

An Antidote for Acute Cocaine Toxicity
Jennifer B. Treweek - and
Kim D. Janda *
Not only has immunopharmacotherapy grown into a field that addresses the abuse of numerous illicit substances, but also the treatment methodologies within immunopharmacotherapy have expanded from traditional active vaccination to passive immunization with anti-drug monoclonal antibodies, optimized mAb formats, and catalytic drug-degrading antibodies. Many laboratories have focused on transitioning distinct immunopharmacotherapeutics to clinical evaluation, but with respect to the indication of cocaine abuse, only the active vaccine TA-CD, which is modeled after our original cocaine hapten GNC,(1) has been carried through to human clinical trials.(2) The successful application of murine mAb GNC92H2 to the reversal of cocaine overdose in a mouse model prompted investigations of human immunoglobulins with the clinical potential to serve as cocaine antidotes. We now report the therapeutic utility of a superior clone, human mAb GNCgzk (Kd = 0.18 nM), which offers a 10-fold improvement in cocaine binding affinity. The GNCgzk manifold was engineered for rapid cocaine clearance, and administration of the F(ab′)2 and Fab formats even after the appearance of acute behavioral signs of cocaine toxicity granted nearly complete prevention of lethality. Thus, contrary to the immunopharmacotherapeutic treatment of drug self-administration, minimal antibody doses were shown to counteract the lethality of a molar excess of circulating cocaine. Passive vaccination with drug-specific antibodies represents a viable treatment strategy for the human condition of cocaine overdose.

Vaccine-like Controlled-Release Delivery of an Immunomodulating Peptide To Treat Experimental Autoimmune Encephalomyelitis
Barlas Büyüktimkin - ,
Qun Wang - ,
Paul Kiptoo - ,
John M. Stewart - ,
Cory Berkland - , and
Teruna J. Siahaan *
The objective of this work is to use colloidal gel from alginate–chitosan–PLGA complex to deliver Ac-PLP-BPI-NH2-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH2-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH2-2-NP) was achieved by subcutaneous (sc) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH2-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH2-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH2-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH2-2-NP-treated mice compared to the mouse group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time sc administration of Ac-PLP-BPI-NH2-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation.

Interaction of Three Regiospecific Amino Acid Residues Is Required for OATP1B1 Gain of OATP1B3 Substrate Specificity
Marianne K. DeGorter - ,
Richard H. Ho - ,
Brenda F. Leake - ,
Rommel G. Tirona - , and
Richard B. Kim *
The human organic anion-transporting polypeptides OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) are liver-enriched membrane transporters of major importance to hepatic uptake of numerous endogenous compounds, including bile acids, steroid conjugates, hormones, and drugs, including the 3-hydroxy-3-methylglutaryl Co-A reductase inhibitor (statin) family of cholesterol-lowering compounds. Despite their remarkable substrate overlap, there are notable exceptions: in particular, the gastrointestinal peptide hormone cholecystokinin-8 (CCK-8) is a high affinity substrate for OATP1B3 but not OATP1B1. We utilized homologous recombination of linear DNA by E. coli to generate a library of cDNA containing monomer size chimeric OATP1B1–1B3 and OATP1B3–1B1 transporters with randomly distributed chimeric junctions to identify three discrete regions of the transporter involved in conferring CCK-8 transport activity. Site-directed mutagenesis of three key residues in OATP1B1 transmembrane helices 1 and 10, and extracellular loop 6, to the corresponding residues in OATP1B3, resulted in a gain of CCK-8 transport by OATP1B1. The residues appear specific to CCK-8, as the mutations did not affect transport of the shared OATP1B substrate atorvastatin or the OATP1B1-specific substrate estrone sulfate. Regions involved in gain of CCK-8 transport by OATP1B1, when mapped to the crystal structures of bacterial transporters from the major facilitator superfamily, are positioned to suggest these regions could readily interact with drug substrates. Accordingly, our data provide new insight into the molecular determinants of the substrate specificity of these hepatic uptake transporters with relevance to targeted drug design and prediction of drug–drug interactions.

ADMET Evaluation in Drug Discovery. 12. Development of Binary Classification Models for Prediction of hERG Potassium Channel Blockage
Sichao Wang - ,
Youyong Li - ,
Junmei Wang - ,
Lei Chen - ,
Liling Zhang - ,
Huidong Yu - , and
Tingjun Hou *
Inhibition of the human ether-a-go-go related gene (hERG) potassium channel may result in QT interval prolongation, which causes severe cardiac side effects and is a major problem in clinical studies of drug candidates. The development of in silico tools to filter out potential hERG potassium channel blockers in early stages of the drug discovery process is of considerable interest. Here, a diverse set of 806 compounds with hERG inhibition data was assembled, and the binary hERG classification models using naive Bayesian classification and recursive partitioning (RP) techniques were established and evaluated. The naive Bayesian classifier based on molecular properties and the ECFP_8 fingerprints yielded 84.8% accuracy for the training set using the leave-one-out (LOO) cross-validation procedure and 85% accuracy for the test set of 120 molecules. For the two additional test sets, the model achieved 89.4% accuracy for the WOMBAT-PK test set, and 86.1% accuracy for the PubChem test set. The naive Bayesian classifiers gave better predictions than the RP classifiers. Moreover, the Bayesian classifier, employing molecular fingerprints, highlights the important structural fragments favorable or unfavorable for hERG potassium channel blockage, which offers extra valuable information for the design of compounds avoiding undesirable hERG activity.

Partial Biodistribution and Pharmacokinetics of Isoniazid and Rifabutin Following Pulmonary Delivery of Inhalable Microparticles to Rhesus Macaques
Rahul Kumar Verma - ,
Jatinder Kaur Mukker - ,
Ravi Shankar Prasad Singh - ,
Kaushlendra Kumar - ,
Priya Ranjan Prasad Verma - , and
Amit Misra *
Dry powder inhalations (DPI) of microparticles containing isoniazid (INH) and rifabutin (RFB) are under preclinical development for use in pulmonary tuberculosis. Microparticles containing 0.25, 2.5, or 25 mg of each drug were administered daily for 90 days to rhesus macaques (n = 4/group). Single inhalations or intravenous (i.v.) doses were administered to separate groups. Drugs in serum, alveolar macrophages, and organ homogenates were assayed by high-performance liquid chromatography (HPLC). The RFB/INH in the lungs (101.10 ± 12.90/101.07 ± 8.09 μg/g of tissue) was twice that of the liver concentrations (60.22 ± 04.97/52.08 ± 4.62 μg/g) and four times that of the kidneys (22.89 ± 05.22/30.25 ± 3.71 μg/g). Pharmacokinetic parameters indicated the operation of flip-flop kinetics. Thus, the elimination half-life (t1/2) of RFB and INH was calculated as 8.01 ± 0.5 and 2.49 ± 0.23 h, respectively, upon intravenous (iv) administration, and as 13.8 ± 0.8 and 10.43 ± 0.77 h following a single inhalation; or 13.36 ± 3.51 and 10.13 ± 3.01 at a presumed steady state (day 60 of dosing). Targeted and sustained drug delivery to nonhuman primate lungs and alveolar macrophages was demonstrated. Flip-flop serum pharmacokinetics was observed, and nonlinearity in some pharmacokinetic parameters at logarithmic dose increments was indicated. The results suggest that human patients would benefit through improvement in biodistribution following DPI.
Brief Articles

Involvement of Ca2+ and ATP in Enhanced Gene Delivery by Bubble Liposomes and Ultrasound Exposure
Daiki Omata - ,
Yoichi Negishi *- ,
Sho Yamamura - ,
Shoko Hagiwara - ,
Yoko Endo-Takahashi - ,
Ryo Suzuki - ,
Kazuo Maruyama - ,
Motoyoshi Nomizu - , and
Yukihiko Aramaki
Recently, we reported the accelerated gene transfection efficiency of laminin-derived AG73-peptide-labeled polyethylene glycol-modified liposomes (AG73-PEG liposomes) and cell penetrating TAT-peptide labeled PEG liposomes using PEG-modified liposomes, which trap echo-contrast gas, “Bubble liposomes” (BLs), and ultrasound (US) exposure. BLs and US exposure were reported to enhance the endosomal escape of AG73-PEG liposomes, thereby leading to increased gene expression. However, the mechanism behind the effect of BLs and US exposure on endosomes is not well understood. US exposure was reported to induce an influx of calcium ions (Ca2+) by enhancing permeability of the cell membrane. Therefore, we examined the effect of Ca2+ on the endosomal escape and transfection efficiency of AG73-PEG liposomes, which were previously enhanced by BLs and US exposure. For cells treated with EGTA, the endosomal escape and gene expression of AG73-PEG liposomes were not enhanced by BLs and US exposure. Similarly, transfection efficiency of the AG73-PEG liposomes in ATP-depleted cells was not enhanced. Our results suggest that Ca2+ and ATP are necessary for the enhanced endosomal escape and gene expression of AG73-PEG liposomes by BLs and US exposure. These findings may contribute to the development of useful techniques to improve endosomal escape and achieve efficient gene transfection.

Interaction of α-Synuclein and a Cell Penetrating Fusion Peptide with Higher Eukaryotic Cell Membranes Assessed by 19F NMR
Imola G. Zigoneanu - and
Gary J. Pielak *
We show that fluorine NMR can be used to monitor the insertion and change in conformation of a 19F-labeled cell-penetrating peptide upon interacting with the cellular plasma membrane. α-Synuclein and a construct comprising a cell-penetrating peptide covalently attached to its N-terminus were studied. Important information about the interaction of the proteins with CHO-K1 cells was obtained by monitoring the diminution of 19F resonances of 3-fluoro-l-tyrosine labeled proteins. For α-synuclein, a decrease in the resonance from position 39 was observed indicating that only the N-terminal third region of the protein interacts with plasma membrane. However, when the fusion construct was incubated with the cells, a decrease in the resonance from the fusion peptide region was noted with no change in the resonances from α-synuclein region. Longer incubation, studied by using confocal fluorescence microscopy, revealed that the fusion construct translocates into the cells, but α-synuclein alone did not cross the membrane in significant amounts.
Additions and Corrections
Correction to “Filamentous, Mixed Micelles of Triblock Copolymers Enhance Tumor Localization of Indocyanine Green in a Murine Xenograft Model”
Tae Hee Kim - ,
Christopher W. Mount - ,
Benjamin W. Dulken - ,
Jenelyn Ramos - ,
Caroline J. Fu - ,
Htet A. Khant - ,
Wah Chiu - ,
Wayne R. Gombotz - , and
Suzie H. Pun
This publication is free to access through this site. Learn More