Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Approximate single-valued representations of multivalued potential energy surfaces
My Activity
CONTENT TYPES

Figure 1Loading Img
    article

    Approximate single-valued representations of multivalued potential energy surfaces
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1984, 88, 21, 4887–4891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j150665a016
    Published October 1, 1984

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 109 publications.

    1. Xin Chen, Mathias S. Jørgensen, Jun Li, Bjørk Hammer. Atomic Energies from a Convolutional Neural Network. Journal of Chemical Theory and Computation 2018, 14 (7) , 3933-3942. https://doi.org/10.1021/acs.jctc.8b00149
    2. C. E. M. Gonçalves, B. R. L. Galvão, V. C. Mota, J. P. Braga, A. J. C. Varandas. Accurate Explicit-Correlation-MRCI-Based DMBE Potential-Energy Surface for Ground-State CNO. The Journal of Physical Chemistry A 2018, 122 (16) , 4198-4207. https://doi.org/10.1021/acs.jpca.8b01881
    3. Huanchen Zhai and Anastassia N. Alexandrova . Ensemble-Average Representation of Pt Clusters in Conditions of Catalysis Accessed through GPU Accelerated Deep Neural Network Fitting Global Optimization. Journal of Chemical Theory and Computation 2016, 12 (12) , 6213-6226. https://doi.org/10.1021/acs.jctc.6b00994
    4. Andrea Lombardi, Federico Palazzetti, Vincenzo Aquilanti, Hou-Kuan Li, Po-Yu Tsai, Toshio Kasai, and King-Chuen Lin . Rovibrationally Excited Molecules on the Verge of a Triple Breakdown: Molecular and Roaming Mechanisms in the Photodecomposition of Methyl Formate. The Journal of Physical Chemistry A 2016, 120 (27) , 5155-5162. https://doi.org/10.1021/acs.jpca.6b00723
    5. J. Ree, Y. H. Kim, and H. K. Shin . Dependence of the Four-Atom Reaction HBr + OH → Br + H2O on Temperatures between 20 and 2000 K. The Journal of Physical Chemistry A 2015, 119 (13) , 3147-3160. https://doi.org/10.1021/jp511505h
    6. Jing Li and António J. C. Varandas . Accurate ab-Initio-Based Single-Sheeted DMBE Potential-Energy Surface for Ground-State N2O. The Journal of Physical Chemistry A 2012, 116 (18) , 4646-4656. https://doi.org/10.1021/jp302173h
    7. Jing Xiao, Chuan-Lu Yang, Xiao-Fei Tong, Mei-Shan Wang, and Xiao-Guang Ma . Quasi-classical Trajectory Study of the Ne + H2+ → NeH+ + H Reaction Based on Global Potential Energy Surface. The Journal of Physical Chemistry A 2011, 115 (9) , 1486-1492. https://doi.org/10.1021/jp108922c
    8. Y. Q. Li and A. J. C. Varandas. Ab-Initio-Based Global Double Many-Body Expansion Potential Energy Surface for the Electronic Ground State of the Ammonia Molecule. The Journal of Physical Chemistry A 2010, 114 (24) , 6669-6680. https://doi.org/10.1021/jp1019685
    9. S. Joseph and A. J. C. Varandas. Accurate Double Many-Body Expansion Potential Energy Surface for the Lowest Singlet State of Methylene. The Journal of Physical Chemistry A 2009, 113 (16) , 4175-4183. https://doi.org/10.1021/jp810600r
    10. Vinícius C. Mota and, António J. C. Varandas. HN2(2A‘) Electronic Manifold. II. Ab Initio Based Double-Sheeted DMBE Potential Energy Surface via a Global Diabatization Angle. The Journal of Physical Chemistry A 2008, 112 (16) , 3768-3786. https://doi.org/10.1021/jp710610d
    11. Vinícius C. Mota and, António J.C. Varandas. HN2(2A‘) Electronic Manifold. I. A Global ab Initio Study of First Two States. The Journal of Physical Chemistry A 2007, 111 (41) , 10191-10195. https://doi.org/10.1021/jp070267l
    12. Alexandre Zanchet, , Beatrice Bussery-Honvault and, Pascal Honvault. Study of the C(3P) + OH(X2Π) → CO(XΣg+) + H(2S) Reaction:  A Fully Global ab Initio Potential Energy Surface of the XA‘ State. The Journal of Physical Chemistry A 2006, 110 (43) , 12017-12025. https://doi.org/10.1021/jp064352p
    13. Nikolai B. Balabanov,, Benjamin C. Shepler, and, Kirk A. Peterson. Accurate Global Potential Energy Surface and Reaction Dynamics for the Ground State of HgBr2. The Journal of Physical Chemistry A 2005, 109 (39) , 8765-8773. https://doi.org/10.1021/jp053415l
    14. Hong Zhang and, Sean C. Smith. Lanczos Subspace Time-Independent Wave Packet Calculations of S (1D) + H2 Reactive Scattering. The Journal of Physical Chemistry A 2002, 106 (25) , 6137-6142. https://doi.org/10.1021/jp0139181
    15. Hong Zhang and, Sean C. Smith. Calculation of Resonances and Product State Distributions for the Unimolecular Dissociation of H2S. The Journal of Physical Chemistry A 2002, 106 (25) , 6129-6136. https://doi.org/10.1021/jp013919t
    16. Frederico V. Prudente and, António J. C. Varandas. A Direct Evaluation of the Partition Function and Thermodynamic Data for Water at High Temperatures. The Journal of Physical Chemistry A 2002, 106 (25) , 6193-6200. https://doi.org/10.1021/jp020797b
    17. Sheng Der Chao and, Rex T. Skodje. Quasi-Classical Trajectory Studies of the Insertion Reactions S(1D) + H2, HD, and D2. The Journal of Physical Chemistry A 2001, 105 (11) , 2474-2484. https://doi.org/10.1021/jp003184c
    18. Marlies Hankel and, Gabriel G. Balint-Kurti, , Stephen K. Gray. Quantum Mechanical Calculation of Reaction Probabilities and Branching Ratios for the O(1D) + HD → OH(OD) + D(H) Reaction on the X̃A‘ and 11A‘‘ Adiabatic Potential Energy Surfaces. The Journal of Physical Chemistry A 2001, 105 (11) , 2330-2339. https://doi.org/10.1021/jp003772q
    19. J. L. Llanio-Trujillo,, J. M. C. Marques, and, A. J. C. Varandas. Mode Specificity Study in Unimolecular Dissociation of Nonrotating H2O, DHO, and MuHO Molecules. The Journal of Physical Chemistry A 1999, 103 (50) , 10907-10914. https://doi.org/10.1021/jp992461g
    20. Stephen K. Gray, , Carlo Petrongolo, , Karen Drukker and, George C. Schatz. Quantum Wave Packet Study of Nonadiabatic Effects in O(1D) + H2 → OH + H. The Journal of Physical Chemistry A 1999, 103 (47) , 9448-9459. https://doi.org/10.1021/jp991601j
    21. Otoniel Denis-Alpizar, Alexandre Zanchet, Thierry Stoecklin. Quantum study of the rovibrational relaxation of HF by collision with 4 He on a new potential energy surface. Physical Chemistry Chemical Physics 2024, 26 (17) , 13432-13440. https://doi.org/10.1039/D3CP05606F
    22. Yanling Lü, Chengyuan Zhang, Qiang Guo, Yongqing Li. An accurate many-body expansion potential energy surface for HO 2 (X 2 A″) by extrapolation to the complete basis set limit and quantum dynamics of the related reaction O( 3 P) + OH( 2 Π). Journal of Physics B: Atomic, Molecular and Optical Physics 2023, 56 (13) , 135001. https://doi.org/10.1088/1361-6455/acd82d
    23. C.M.R. Rocha, A.J.C. Varandas. A general code for fitting global potential energy surfaces via CHIPR method: Direct-Fit Diatomic and tetratomic molecules. Computer Physics Communications 2021, 258 , 107556. https://doi.org/10.1016/j.cpc.2020.107556
    24. Haina Wang, Ryan P. A. Bettens. Modelling potential energy surfaces for small clusters using Shepard interpolation with Gaussian-form nodal functions. Physical Chemistry Chemical Physics 2019, 21 (8) , 4513-4522. https://doi.org/10.1039/C8CP07640E
    25. A. Chefai, F. Khadri, K. Hammami, F. Lique. Collisional excitation of interstellar CCN(X2Π) induced by He. The Journal of Chemical Physics 2018, 149 (1) https://doi.org/10.1063/1.5040253
    26. J. Espinosa-Garcia, J. C. Corchado. QCT dynamics study of OH/OD + GeH 4 reactions. The problem of water bending excitation. Physical Chemistry Chemical Physics 2017, 19 (2) , 1580-1589. https://doi.org/10.1039/C6CP08118E
    27. Sergei Manzhos, Richard Dawes, Tucker Carrington. Neural network‐based approaches for building high dimensional and quantum dynamics‐friendly potential energy surfaces. International Journal of Quantum Chemistry 2015, 115 (16) , 1012-1020. https://doi.org/10.1002/qua.24795
    28. Huanchen Zhai, Shi Ying Lin. A fast hybrid method for constructing multidimensional potential energy surfaces from ab initio calculations: A new global analytic PES of NH2 system. Chemical Physics 2015, 455 , 57-64. https://doi.org/10.1016/j.chemphys.2015.04.012
    29. Yu-Zhi Song, Yuan Zhang, Lu-Lu Zhang, Shou-Bao Gao, Qing-Tian Meng. Globally accurate ab initio based potential energy surface of H 2 O + ( X 4 A″). Chinese Physics B 2015, 24 (6) , 063101. https://doi.org/10.1088/1674-1056/24/6/063101
    30. Dan Wu, Mingxing Guo, Yun Wang, Shuhui Yin, Zhigang Sun, Mark R. Hoffmann. Coriolis coupling effect of state-to-state quantum dynamics for He + HeH+. Theoretical Chemistry Accounts 2014, 133 (10) https://doi.org/10.1007/s00214-014-1552-z
    31. Cui-Xia Yao, Pei-Yu Zhang, Zhi-Xin Duan, Guang-Jiu Zhao. Influence of collision energy on the dynamics of the reaction H (2S) + NH (X3Σ−) → N (4S) + H2 (X1Σ g + ) by the state-to-state quantum mechanical study. Theoretical Chemistry Accounts 2014, 133 (6) https://doi.org/10.1007/s00214-014-1489-2
    32. Andrea Lombardi, Federico Palazzetti, King-Chuen Lin, Po-Yu Tsai. Effective Four-Center Model for the Photodissociation Dynamics of Methyl Formate. 2014, 452-467. https://doi.org/10.1007/978-3-319-09144-0_31
    33. Fabrice Dayou, Denis Duflot, Alejandro Rivero-Santamaría, Maurice Monnerville. A global ab initio potential energy surface for the X  2 A ′ ground state of the Si + OH → SiO + H reaction. The Journal of Chemical Physics 2013, 139 (20) https://doi.org/10.1063/1.4832324
    34. A. J. C. Varandas. Combined-hyperbolic-inverse-power-representation of potential energy surfaces: A preliminary assessment for $\bf H_3$H3 and $\bf HO_2$HO2. The Journal of Chemical Physics 2013, 138 (5) https://doi.org/10.1063/1.4788912
    35. Y. Q. Li, Y. Z. Song, P. Song, Y. Z. Li, Y. Ding, M. T. Sun, F. C. Ma. Ab initio -based double many-body expansion potential energy surface for the first excited triplet state of the ammonia molecule. The Journal of Chemical Physics 2012, 136 (19) https://doi.org/10.1063/1.4718705
    36. Grégoire Guillon, Alexandra Viel, Jean-Michel Launay. Full dimension Rb2He ground triplet potential energy surface and quantum scattering calculations. The Journal of Chemical Physics 2012, 136 (17) https://doi.org/10.1063/1.4709433
    37. Jing-Juan Liang, Chuan-Lu Yang, Li-Zhi Wang, Qing-Gang Zhang. A new analytical potential energy surface for the singlet state of He2H+. The Journal of Chemical Physics 2012, 136 (9) https://doi.org/10.1063/1.3691259
    38. Devashis Majumdar, Szczepan Roszak, Jerzy Leszczynski. Application of Quantum-Chemical Techniques to Model Environmental Mercury Depletion Reactions. 2012, 435-470. https://doi.org/10.1007/978-94-007-0923-2_12
    39. L. A. Poveda, M. Biczysko, A. J. C. Varandas. Accurate ab initio based DMBE potential energy surface for the ground electronic state of N2H2. The Journal of Chemical Physics 2009, 131 (4) https://doi.org/10.1063/1.3176512
    40. M. Malshe, R. Narulkar, L. M. Raff, M. Hagan, S. Bukkapatnam, P. M. Agrawal, R. Komanduri. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. The Journal of Chemical Physics 2009, 130 (18) https://doi.org/10.1063/1.3124802
    41. Alexandre Zanchet, Béatrice Bussery-Honvault, Mohamed Jorfi, Pascal Honvault. Study of the C(3P) + OH(X2Π) → CO(a3Π) + H(2S) reaction: fully global ab initio potential energy surfaces of the 12A″ and 14A″ excited states and non adiabatic couplings. Physical Chemistry Chemical Physics 2009, 11 (29) , 6182. https://doi.org/10.1039/b903829a
    42. Sergei Manzhos, Tucker Carrington. Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. The Journal of Chemical Physics 2008, 129 (22) https://doi.org/10.1063/1.3021471
    43. Piotr Piecuch, Marta Włoch, António J. C. Varandas. Application of renormalized coupled-cluster methods to potential function of water. Theoretical Chemistry Accounts 2008, 120 (1-3) , 59-78. https://doi.org/10.1007/s00214-007-0297-3
    44. João Brandão, Carolina M.A. Rio, Wenli Wang. An Important Well Studied Atmospheric Reaction, <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi mathvariant="normal">O</mml:mi><mml:mspace width="0.25em"/><mml:mo stretchy="false">(</mml:mo><mml:mmultiscripts><mml:mi>D</mml:mi><mml:mprescripts/><mml:none/><mml:mn>1</mml:mn></mml:mmultiscripts><mml:mo stretchy="false">)</mml:mo><mml:mo>+</mml:mo><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>. 2008, 21-41. https://doi.org/10.1016/S0065-3276(07)00203-1
    45. Benjamin C. Shepler, Nikolai B. Balabanov, Kirk A. Peterson. Hg + Br → Hg Br recombination and collision-induced dissociation dynamics. The Journal of Chemical Physics 2007, 127 (16) https://doi.org/10.1063/1.2777142
    46. Carolina M. A. Rio, Joao Brandao. Dynamical studies and product analysis of O( 1 D) + H 2 /D 2 reactions. Molecular Physics 2007, 105 (4) , 359-373. https://doi.org/10.1080/00268970601161582
    47. Piotr Piecuch, Marta Wloch, António J. C. Varandas. Renormalized coupled-cluster methods: Theoretical foundations and application to the potential function of water. 2007, 63-121. https://doi.org/10.1007/978-1-4020-5460-0_3
    48. Carolina M.A. Rio, João Brandão. The branching ratio of the O(1D)+HD reaction: A dynamical study. Chemical Physics Letters 2007, 433 (4-6) , 268-274. https://doi.org/10.1016/j.cplett.2006.11.061
    49. A. J. C. Varandas, L. A. Poveda. Accurate DMBE Potential Energy Surface For the N(2D) + H2(1Σ g + ) Reaction Using an Improved Switching Function Formalism. Theoretical Chemistry Accounts 2006, 116 (4-5) , 404-419. https://doi.org/10.1007/s00214-006-0092-6
    50. Sergei Manzhos, Tucker Carrington. A random-sampling high dimensional model representation neural network for building potential energy surfaces. The Journal of Chemical Physics 2006, 125 (8) https://doi.org/10.1063/1.2336223
    51. F. Dayou, W.-Ü. L. Tchang-Brillet, M. Monnerville. Quasi-Classical Trajectory study of Si+O2→SiO+O reaction. The Journal of Chemical Physics 2005, 123 (8) https://doi.org/10.1063/1.2009738
    52. N. Balucani, P. Casavecchia, F. J. Aoiz, L. Banares, J. F. Castillo, V. J. Herrero. Dynamics of the O(1D) D2 reaction: A comparison between crossed molecular beam experiments and quasiclassical trajectory calculations on the lowest three potential energy surfaces. Molecular Physics 2005, 103 (13) , 1703-1714. https://doi.org/10.1080/149920500058077
    53. F. Dayou, A. Spielfiedel. Ab initio calculation of the ground (1A′) potential energy surface and theoretical rate constant for the Si+O2→SiO+O reaction. The Journal of Chemical Physics 2003, 119 (8) , 4237-4250. https://doi.org/10.1063/1.1594172
    54. Aurelio Rodriguez, Ernesto Garcia, M. Luz Hernandez, Antonio Laganà. Isotopic effects in the product vibrational distribution of the OH(OD)+HCl reaction. Chemical Physics Letters 2003, 371 (1-2) , 223-228. https://doi.org/10.1016/S0009-2614(03)00251-3
    55. Aurelio Rodriguez, Ernesto Garcia, M. Luz Hernández, Antonio Laganà. A LAGROBO strategy to fit potential energy surfaces: the OH+HCl reaction. Chemical Physics Letters 2002, 360 (3-4) , 304-312. https://doi.org/10.1016/S0009-2614(02)00835-7
    56. Kurt M. Christoffel, Joel M. Bowman. A quasiclassical trajectory study of O(1D)+HCl reactive scattering on an improved ab initio surface. The Journal of Chemical Physics 2002, 116 (12) , 4842-4846. https://doi.org/10.1063/1.1453403
    57. Tak-San Ho, Timothy Hollebeek, Herschel Rabitz, Sheng Der Chao, Rex T. Skodje, Alexander S. Zyubin, Alexander M. Mebel. A globally smooth ab initio potential surface of the 1 A′ state for the reaction S(1D)+H2. The Journal of Chemical Physics 2002, 116 (10) , 4124-4134. https://doi.org/10.1063/1.1431280
    58. B. Bussery-Honvault, P. Honvault, J.-M. Launay. A study of the C(1D)+H2→CH+H reaction: Global potential energy surface and quantum dynamics. The Journal of Chemical Physics 2001, 115 (23) , 10701-10708. https://doi.org/10.1063/1.1417501
    59. K. Efstathiou, G. Contopoulos. Orbits in the H2O molecule. Chaos: An Interdisciplinary Journal of Nonlinear Science 2001, 11 (2) , 327-334. https://doi.org/10.1063/1.1356068
    60. F. J. Aoiz, L. Bañares, J. F. Castillo, B. Martı́nez-Haya, Marcelo P. de Miranda. The stereodynamics of the O(1D)+HD reaction on the ground 1 1A′ and excited 1 1A″ potential energy surfaces. The Journal of Chemical Physics 2001, 114 (19) , 8328-8338. https://doi.org/10.1063/1.1350917
    61. Alexander S. Zyubin, Alexander M. Mebel, Sheng Der Chao, Rex T. Skodje. Reaction dynamics of S(1D)+H2/D2 on a new ab initio potential surface. The Journal of Chemical Physics 2001, 114 (1) , 320-330. https://doi.org/10.1063/1.1329887
    62. Kirk A Peterson. An accurate global ab initio potential energy surface for the X 1A′ electronic state of HOBr. The Journal of Chemical Physics 2000, 113 (11) , 4598-4612. https://doi.org/10.1063/1.1288913
    63. George C. Schatz. Fitting Potential Energy Surfaces. 2000, 15-32. https://doi.org/10.1007/978-3-642-57051-3_2
    64. Susan Troutman Lee, James M. Farrar. Vibrational state-resolved study of the O−+H2 reaction: Isotope effects on the product energy partitioning. The Journal of Chemical Physics 1999, 111 (16) , 7348-7358. https://doi.org/10.1063/1.480057
    65. Kirk A. Peterson, Sergei Skokov, Joel M. Bowman. A theoretical study of the vibrational energy spectrum of the HOCl/HClO system on an accurate ab initio potential energy surface. The Journal of Chemical Physics 1999, 111 (16) , 7446-7456. https://doi.org/10.1063/1.480069
    66. P. Jimeno, M. D. Gray, G. G. Balint-Kurti. Ab initio potential energy surface for the ground (2A′) state of H+SiO and rotationally inelastic collision cross sections for circumstellar H+SiO collisions. The Journal of Chemical Physics 1999, 111 (11) , 4966-4975. https://doi.org/10.1063/1.479756
    67. Karen Drukker, George C. Schatz. Quantum scattering study of electronic Coriolis and nonadiabatic coupling effects in O(1D)+H2→OH+H. The Journal of Chemical Physics 1999, 111 (6) , 2451-2463. https://doi.org/10.1063/1.479522
    68. Philip J. Kuntz. Diatomics-in-molecules applied to solid hydrogen doped with. Chemical Physics 1999, 240 (1-2) , 19-38. https://doi.org/10.1016/S0301-0104(98)00355-3
    69. A. J. C. Varandas, A. I. Voronin, P. J. S. B. Caridade. Energy switching approach to potential surfaces. III. Three-valued function for the water molecule. The Journal of Chemical Physics 1998, 108 (18) , 7623-7630. https://doi.org/10.1063/1.476197
    70. M. Alagia, N. Balucani, L. Cartechini, P. Casavecchia, E. H. van Kleef, G. G. Volpi, P. J. Kuntz, J. J. Sloan. Crossed molecular beams and quasiclassical trajectory studies of the reaction O(1D)+H2(D2). The Journal of Chemical Physics 1998, 108 (16) , 6698-6708. https://doi.org/10.1063/1.476085
    71. A.J. Alexander, F.J. Aoiz, L. Bañares, M. Brouard, V.J. Herrero, J.P. Simons. Classical reaction probabilities, cross sections and rate constants for the O(1D) + H2 → OH + H reaction. Chemical Physics Letters 1997, 278 (4-6) , 313-324. https://doi.org/10.1016/S0009-2614(97)00989-5
    72. Yen-Tsung Hsu, Jeng-Han Wang, Kopin Liu. Reaction dynamics of O(1D)+H2, D2, and HD: Direct evidence for the elusive abstraction pathway and the estimation of its branching. The Journal of Chemical Physics 1997, 107 (7) , 2351-2356. https://doi.org/10.1063/1.474579
    73. George C. Schatz, Anastasios Papaioannou, Lisa A. Pederson, Lawrence B. Harding, Timothy Hollebeek, Tak-San Ho, Herschel Rabitz. A global A-state potential surface for H2O: Influence of excited states on the O(1D)+H2 reaction. The Journal of Chemical Physics 1997, 107 (7) , 2340-2350. https://doi.org/10.1063/1.474614
    74. A. J. C. Varandas. Energy switching approach to potential surfaces. II. Two-valued function for the water molecule. The Journal of Chemical Physics 1997, 107 (3) , 867-878. https://doi.org/10.1063/1.474385
    75. Timothy Hollebeek, Tak-San Ho, Herschel Rabitz. A fast algorithm for evaluating multidimensional potential energy surfaces. The Journal of Chemical Physics 1997, 106 (17) , 7223-7227. https://doi.org/10.1063/1.473683
    76. Tak-San Ho, Timothy Hollebeek, Herschel Rabitz, Lawrence B. Harding, George C. Schatz. A global H2O potential energy surface for the reaction O(1 D )+H2→OH+H. The Journal of Chemical Physics 1996, 105 (23) , 10472-10486. https://doi.org/10.1063/1.472977
    77. B. Nizamov, D. W. Setser, H. Wang, G. H. Peslherbe, W. L. Hase. Quasiclassical trajectory calculations for the OH( X  2Π) and OD( X  2Π)+HBr reactions: Energy partitioning and rate constants. The Journal of Chemical Physics 1996, 105 (22) , 9897-9911. https://doi.org/10.1063/1.472855
    78. A. J. C. Varandas. Energy switching approach to potential surfaces: An accurate single-valued function for the water molecule. The Journal of Chemical Physics 1996, 105 (9) , 3524-3531. https://doi.org/10.1063/1.473005
    79. A.J. Alexander, F.J. Aoiz, M. Brouard, J.P. Simons. Product state-resolved stereodynamics: quasiclassical study of the reaction () + (ν′, j′) +. Chemical Physics Letters 1996, 256 (6) , 561-568. https://doi.org/10.1016/0009-2614(96)00506-4
    80. Kumi Yunoki, Atsumu Tezaki, Keiichi Yokoyama, Hiroyuki Matsui. Insertion vs. Abstraction in the Reactions of NH(a1Δ, v = 0, 1) with H2 and D2. Bulletin of the Chemical Society of Japan 1996, 69 (5) , 1195-1199. https://doi.org/10.1246/bcsj.69.1195
    81. Gunnar Nyman. Quantum scattering calculations on the NH3+OH→NH2+H2O reaction. The Journal of Chemical Physics 1996, 104 (16) , 6154-6167. https://doi.org/10.1063/1.471281
    82. Ranajit K. Talukdar, A.R. Ravishankara. Rate coefficients for O(1D) + H2, D2, HD reactions and H atom yield in O(1D) + HD reaction. Chemical Physics Letters 1996, 253 (1-2) , 177-183. https://doi.org/10.1016/0009-2614(96)00203-5
    83. G. Nyman. Effects of OH Rotation on the CH4 + OH → CH3 + H2O Reaction. 1996, 223-230. https://doi.org/10.1007/978-3-642-80299-7_17
    84. Tong Peng, Dong H. Zhang, John Z.H. Zhang, Reinhard Schinke. Reaction of () + → + . A three-dimensional quantum dynamics study. Chemical Physics Letters 1996, 248 (1-2) , 37-42. https://doi.org/10.1016/0009-2614(95)01285-0
    85. T. Laurent, P.D. Naik, H.-R. Volpp, J. Wolfrum, T. Arusi-Parpar, I. Bar, S. Rosenwaks. Absolute rate constants, reactive cross-sections and isotopic branching ratio for the reaction of O(1D) with HD. Chemical Physics Letters 1995, 236 (3) , 343-349. https://doi.org/10.1016/0009-2614(95)00213-N
    86. Gunnar Nyman, David C. Clary, Raphael D. Levine. Potential energy surface effects on differential cross sections for polyatomic reactions. Chemical Physics 1995, 191 (1-3) , 223-233. https://doi.org/10.1016/0301-0104(94)00368-K
    87. Gunnar Nyman, David C. Clary. Quantum scattering calculations on the CH4+OH→CH3+H2O reaction. The Journal of Chemical Physics 1994, 101 (7) , 5756-5771. https://doi.org/10.1063/1.467360
    88. David C. Clary, Gunnar Nyman, Ramon Hernandez. Mode selective chemistry in the reactions of OH with HBr and HCl. The Journal of Chemical Physics 1994, 101 (5) , 3704-3714. https://doi.org/10.1063/1.468467
    89. Gunnar Nyman, David C. Clary. Vibrational and rotational effects in the Cl+HOD↔HCl+OD reaction. The Journal of Chemical Physics 1994, 100 (5) , 3556-3567. https://doi.org/10.1063/1.466398
    90. S. Koppe, T. Laurent, P.D. Naik, H.-R. Volpp, J. Wolfrum, T. Arusi-Parpar, I. Bar, S. Rosenwaks. Absolute rate constants and reactive cross sections for the reactions of O(1D) with molecular hydrogen and deuterium. Chemical Physics Letters 1993, 214 (6) , 546-552. https://doi.org/10.1016/0009-2614(93)85681-D
    91. Klaus Mikulecky, Karl-Heinz Gericke. Reaction dynamics of vibrationally excited H2. Chemical Physics 1993, 175 (1) , 13-21. https://doi.org/10.1016/0301-0104(93)80225-X
    92. I.M Pavlichenkov. Bifurcations in quantum rotational spectra. Physics Reports 1993, 226 (4-5) , 173-279. https://doi.org/10.1016/0370-1573(93)90083-P
    93. Atsumu Tezaki, Satoru Okada, Hiroyuki Matsui. Examination of the product channels in the reactions of NH( a  1Δ) with H2 and D2. The Journal of Chemical Physics 1993, 98 (5) , 3876-3883. https://doi.org/10.1063/1.464015
    94. Klaus Mikulecky, Karl-Heinz Gericke. The influence of vibrational and translational motion on the reaction dynamics of O(1 D )+H2(1Σ+ g , v ). The Journal of Chemical Physics 1992, 96 (10) , 7490-7499. https://doi.org/10.1063/1.462400
    95. Cheryl B. Cleveland, John R. Wiesenfeld. Nascent product population distribution in the reaction 16O(1 D 2)+H218O→16OH+18OH. The Journal of Chemical Physics 1992, 96 (1) , 248-255. https://doi.org/10.1063/1.462512
    96. Margarita Alberti, Ramón Sayós, Albert Solé, Antonio Aguilar. B( 2 P)+ H 2 O (X 1 A 1 ): a quasi-classical 3D trajectory calculation. J. Chem. Soc., Faraday Trans. 1991, 87 (8) , 1057-1068. https://doi.org/10.1039/FT9918701057
    97. Koichi Yamashita, Keiji Morokuma. A theoretical study of transition state spectroscopy: Laser dressed potential energy surface and surface hopping trajectory calculations on K+NaCl and Na+KCl. The Journal of Chemical Physics 1989, 91 (12) , 7477-7489. https://doi.org/10.1063/1.457272
    98. George C. Schatz. The analytical representation of electronic potential-energy surfaces. Reviews of Modern Physics 1989, 61 (3) , 669-688. https://doi.org/10.1103/RevModPhys.61.669
    99. Lawrence J. Dunne. Quasiclassical dynamical study of the reaction O(1D)+HD(1Σ+)→OD/OH(2Π)+H/D(2S) on a two-valued potential energy surface. Chemical Physics Letters 1989, 158 (6) , 535-539. https://doi.org/10.1016/0009-2614(89)87385-3
    100. Stephen P. Walch, Lawrence B. Harding. An improved long range potential for O(1 D )+H2. The Journal of Chemical Physics 1988, 88 (12) , 7653-7661. https://doi.org/10.1063/1.454279
    Load all citations

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1984, 88, 21, 4887–4891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j150665a016
    Published October 1, 1984

    Article Views

    194

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.