Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
My Activity
CONTENT TYPES

Figure 1Loading Img
    Article

    Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
    Click to copy article linkArticle link copied!

    View Author Information
    University of Rhode Island, Kingston, Rhode Island 02881, United States
    Argonne National Laboratory, Argonne, Illinois 60439, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 3, 1257–1267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp3118055
    Published January 4, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 419 publications.

    1. Zenghua Chang, Chenxi Ma, Rennian Wang, Bo Wang, Man Yang, Bin Li, Tianhang Zhang, Zhanhai Li, Peizhu Zhao, Xiaopeng Qi, Jiantao Wang. Design and Mechanism Study of High-Safety and Long-Life Electrolyte for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024, 16 (15) , 18980-18990. https://doi.org/10.1021/acsami.4c02237
    2. Kyunil Rah, Byunghee Choi, Changoh Kim. Effective Measures of Thickness Evolution of the Solid Electrolyte Interphase of Graphite Anodes for Li-Ion Batteries. Langmuir 2024, 40 (14) , 7550-7559. https://doi.org/10.1021/acs.langmuir.4c00113
    3. Evan Walter Clark Spotte-Smith, Sudarshan Vijay, Thea Bee Petrocelli, Bernardine L. D. Rinkel, Bryan D. McCloskey, Kristin A. Persson. A Critical Analysis of Chemical and Electrochemical Oxidation Mechanisms in Li-Ion Batteries. The Journal of Physical Chemistry Letters 2024, 15 (2) , 391-400. https://doi.org/10.1021/acs.jpclett.3c03279
    4. Qiurong Chen, Min Chen, Zhangyating Xie, Kuan Zhou, Tianwei Chen, Shen Luo, Shuai Chen, Rongdong Li, Xiaoqing Li, Mengqing Xu, Weishan Li. Constructing a Highly Robust Interface Film for Enhancing Rate Performance of Graphite Anode via a Novel Electrolyte Additive. The Journal of Physical Chemistry Letters 2023, 14 (49) , 10863-10869. https://doi.org/10.1021/acs.jpclett.3c02714
    5. Munaiah Yeddala, Leah Rynearson, Brett L. Lucht. Modification of Carbonate Electrolytes for Lithium Metal Electrodes. ACS Energy Letters 2023, 8 (11) , 4782-4793. https://doi.org/10.1021/acsenergylett.3c01709
    6. Sibali Debnath, Verena A. Neufeld, Leif D. Jacobson, Benjamin Rudshteyn, John L. Weber, Timothy C. Berkelbach, Richard A. Friesner. Accurate Quantum Chemical Reaction Energies for Lithium-Mediated Electrolyte Decomposition and Evaluation of Density Functional Approximations. The Journal of Physical Chemistry A 2023, 127 (44) , 9178-9184. https://doi.org/10.1021/acs.jpca.3c04369
    7. Jing Zhang, Xinyang Yue, Zeyu Wu, Yuanmao Chen, Yu Bai, Kening Sun, Zhenhua Wang, Zheng Liang. A LiF-Rich Solid Electrolyte Interphase in a Routine Carbonate Electrolyte by Tuning the Interfacial Chemistry Behavior of LiPF6 for Stable Li Metal Anodes. Nano Letters 2023, 23 (20) , 9609-9617. https://doi.org/10.1021/acs.nanolett.3c03340
    8. Eric J. McShane, Valerie A. Niemann, Peter Benedek, Xianbiao Fu, Adam C. Nielander, Ib Chorkendorff, Thomas F. Jaramillo, Matteo Cargnello. Quantifying Influence of the Solid-Electrolyte Interphase in Ammonia Electrosynthesis. ACS Energy Letters 2023, 8 (10) , 4024-4032. https://doi.org/10.1021/acsenergylett.3c01534
    9. Mengyu Tian, Zhou Jin, Ziyu Song, Ronghan Qiao, Yong Yan, Hailong Yu, Liubin Ben, Michel Armand, Heng Zhang, Zhi-bin Zhou, Xuejie Huang. Domino Reactions Enabling Sulfur-Mediated Gradient Interphases for High-Energy Lithium Batteries. Journal of the American Chemical Society 2023, 145 (39) , 21600-21611. https://doi.org/10.1021/jacs.3c07908
    10. Haiyan Luo, Baodan Zhang, Haitang Zhang, Xiaohong Wu, Qizheng Zheng, Yawen Yan, Zhengang Li, Yonglin Tang, Weiwei Hao, Gaowa Liu, Yu-Hao Hong, Jinyu Ye, Yu Qiao, Shi-Gang Sun. Full-Dimensional Analysis of Electrolyte Decomposition on the Cathode–Electrolyte Interface: Deciphering Electrolyte Degradation Mechanisms on the High-Ni LiNixMnyCo1–x–yO2 Cathode–Electrolyte Interface during the Extreme Fast Charging Process. The Journal of Physical Chemistry C 2023, 127 (33) , 16319-16330. https://doi.org/10.1021/acs.jpcc.3c04154
    11. Shogo Yamazaki, Ryoichi Tatara, Hironori Mizuta, Kei Kawano, Satoshi Yasuno, Shinichi Komaba. Consumption of Fluoroethylene Carbonate Electrolyte-Additive at the Si–Graphite Negative Electrode in Li and Li-Ion Cells. The Journal of Physical Chemistry C 2023, 127 (29) , 14030-14040. https://doi.org/10.1021/acs.jpcc.3c00843
    12. Shuai Chen, Lingling Huang, Xinyang Wen, Qiurong Chen, Zhiyong Xia, Suli Li, Hai Wang, Mengqing Xu, Weishan Li. Formation Mechanism and Regulation of LiF in a Solid Electrolyte Interphase on Graphite Anodes in Carbonate Electrolytes. The Journal of Physical Chemistry C 2023, 127 (24) , 11462-11471. https://doi.org/10.1021/acs.jpcc.3c02731
    13. Jennifer P. Allen, Christopher A. O’Keefe, Clare P. Grey. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement. The Journal of Physical Chemistry C 2023, 127 (20) , 9509-9521. https://doi.org/10.1021/acs.jpcc.3c01396
    14. Haiyan Luo, Baodan Zhang, Haitang Zhang, Qizheng Zheng, Xiaohong Wu, Yawen Yan, Zhengang Li, Yonglin Tang, Weiwei Hao, Gaowa Liu, Yu-hao Hong, Jinyu Ye, Yu Qiao, Shi-Gang Sun. Full-Dimensional Analysis of Electrolyte Decomposition on Cathode–Electrolyte Interface: Establishing Characterization Paradigm on LiNi0.6Co0.2Mn0.2O2 Cathode with Potential Dependence. The Journal of Physical Chemistry Letters 2023, 14 (19) , 4565-4574. https://doi.org/10.1021/acs.jpclett.3c00674
    15. Jennifer P. Allen, Clare P. Grey. Solution NMR of Battery Electrolytes: Assessing and Mitigating Spectral Broadening Caused by Transition Metal Dissolution. The Journal of Physical Chemistry C 2023, 127 (9) , 4425-4438. https://doi.org/10.1021/acs.jpcc.2c08274
    16. Evan Walter Clark Spotte-Smith, Thea Bee Petrocelli, Hetal D. Patel, Samuel M. Blau, Kristin A. Persson. Elementary Decomposition Mechanisms of Lithium Hexafluorophosphate in Battery Electrolytes and Interphases. ACS Energy Letters 2023, 8 (1) , 347-355. https://doi.org/10.1021/acsenergylett.2c02351
    17. Jaewook Shin, Tae-Hee Kim, Hyeonmuk Kang, EunAe Cho. Epitaxial Metal–Organic Framework for Stabilizing the Formation of a Solid Electrolyte Interphase on the Si Anode of a Lithium-Ion Battery. ACS Sustainable Chemistry & Engineering 2022, 10 (32) , 10615-10626. https://doi.org/10.1021/acssuschemeng.2c02337
    18. Eric J. McShane, Helen K. Bergstrom, Peter J. Weddle, David E. Brown, Andrew M. Colclasure, Bryan D. McCloskey. Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging. ACS Energy Letters 2022, 7 (8) , 2734-2744. https://doi.org/10.1021/acsenergylett.2c01059
    19. Vincent Vivier, Mark E. Orazem. Impedance Analysis of Electrochemical Systems. Chemical Reviews 2022, 122 (12) , 11131-11168. https://doi.org/10.1021/acs.chemrev.1c00876
    20. Mitsunori Kitta, Kazuki Yoshii, Kensuke Murai, Hikaru Sano. Optical Study of the Surface Film Formed during Li-Metal Deposition and Dissolution Investigated by Surface Plasmon Resonance Spectroscopy. ACS Applied Materials & Interfaces 2022, 14 (24) , 28370-28377. https://doi.org/10.1021/acsami.2c04978
    21. Haneol Kang, Hoon Kim, Chuleun Yeom, Moon Jeong Park. Designing Hybrid Artificial Interphases with Dilithium Vinylphosphonate for Lithium Batteries with Si–Graphite Anodes. ACS Applied Energy Materials 2022, 5 (4) , 4673-4683. https://doi.org/10.1021/acsaem.2c00103
    22. Wesley M. Dose, Israel Temprano, Jennifer P. Allen, Erik Björklund, Christopher A. O’Keefe, Weiqun Li, B. Layla Mehdi, Robert S. Weatherup, Michael F. L. De Volder, Clare P. Grey. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (11) , 13206-13222. https://doi.org/10.1021/acsami.1c22812
    23. Yijing Qiu, Dongsheng Lu, Yunyan Gai, Yuepeng Cai. Adiponitrile (ADN): A Stabilizer for the LiNi0.8Co0.1Mn0.1O2 (NCM811) Electrode/Electrolyte Interface of a Graphite/NCM811 Li-Ion Cell. ACS Applied Materials & Interfaces 2022, 14 (9) , 11398-11407. https://doi.org/10.1021/acsami.1c23335
    24. Joseph W. Abbott, Felix Hanke. Kinetically Corrected Monte Carlo–Molecular Dynamics Simulations of Solid Electrolyte Interphase Growth. Journal of Chemical Theory and Computation 2022, 18 (2) , 925-934. https://doi.org/10.1021/acs.jctc.1c00921
    25. Noah M. Johnson, Zhenzhen Yang, Ira Bloom, Zhengcheng Zhang. Enabling High-Temperature and High-Voltage Lithium-Ion Battery Performance through a Novel Cathode Surface-Targeted Additive. ACS Applied Materials & Interfaces 2021, 13 (49) , 59538-59545. https://doi.org/10.1021/acsami.1c18493
    26. Chamithri Jayawardana, Nuwanthi Rodrigo, Bharathy Parimalam, Brett L Lucht. Role of Electrolyte Oxidation and Difluorophosphoric Acid Generation in Crossover and Capacity Fade in Lithium Ion Batteries. ACS Energy Letters 2021, 6 (11) , 3788-3792. https://doi.org/10.1021/acsenergylett.1c01657
    27. Chuntian Cao, Travis P. Pollard, Oleg Borodin, Julian E. Mars, Yuchi Tsao, Maria R. Lukatskaya, Robert M. Kasse, Marshall A. Schroeder, Kang Xu, Michael F. Toney, Hans-Georg Steinrück. Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. Chemistry of Materials 2021, 33 (18) , 7315-7336. https://doi.org/10.1021/acs.chemmater.1c01744
    28. Xiaowei Xie, Evan Walter Clark Spotte-Smith, Mingjian Wen, Hetal D. Patel, Samuel M. Blau, Kristin A. Persson. Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network. Journal of the American Chemical Society 2021, 143 (33) , 13245-13258. https://doi.org/10.1021/jacs.1c05807
    29. Xueying Zheng, Liqiang Huang, Wei Luo, Haotian Wang, Yiming Dai, Xuyang Liu, Zhongqiang Wang, Honghe Zheng, Yunhui Huang. Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Letters 2021, 6 (6) , 2054-2063. https://doi.org/10.1021/acsenergylett.1c00647
    30. Sha Tan, Undugodage Nuwanthi Dilhari Rodrigo, Zulipiya Shadike, Brett Lucht, Kang Xu, Chunsheng Wang, Xiao-Qing Yang, Enyuan Hu. Novel Low-Temperature Electrolyte Using Isoxazole as the Main Solvent for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (21) , 24995-25001. https://doi.org/10.1021/acsami.1c05894
    31. Shaoxiong Yang, Yuping Zhang, Zhongliang Li, Norio Takenaka, Yan Liu, Hanqin Zou, Wenting Chen, Mingcong Du, Xu-Jia Hong, Rui Shang, Eiichi Nakamura, Yue-Peng Cai, Ya-Qian Lan, Qifeng Zheng, Yuki Yamada, Atsuo Yamada. Rational Electrolyte Design to Form Inorganic–Polymeric Interphase on Silicon-Based Anodes. ACS Energy Letters 2021, 6 (5) , 1811-1820. https://doi.org/10.1021/acsenergylett.1c00514
    32. Jiraya Kiriratnikom, Nattiya Laiwattanapaisarn, Kunnigar Vongnam, Nopparat Thavornsin, Pornpen Sae-ung, Sophon Kaeothip, Anucha Euapermkiati, Supawadee Namuangruk, Khamphee Phomphrai. Highly Active Chromium Complexes Supported by Constrained Schiff-Base Ligands for Cycloaddition of Carbon Dioxide to Epoxides. Inorganic Chemistry 2021, 60 (9) , 6147-6151. https://doi.org/10.1021/acs.inorgchem.0c03732
    33. Jintao Fu, John S. Corsi, Samuel S. Welborn, Victoria Basile, Lin Wang, Alexander K. Ng, Eric Detsi. Eco-friendly Synthesis of Nanoporous Magnesium by Air-Free Electrolytic Dealloying with Recovery of Sacrificial Elements for Energy Conversion and Storage Applications. ACS Sustainable Chemistry & Engineering 2021, 9 (7) , 2762-2769. https://doi.org/10.1021/acssuschemeng.0c08157
    34. Ruiting Zhan, Zhenzhen Yang, Ira Bloom, Lei Pan. Significance of a Solid Electrolyte Interphase on Separation of Anode and Cathode Materials from Spent Li-Ion Batteries by Froth Flotation. ACS Sustainable Chemistry & Engineering 2021, 9 (1) , 531-540. https://doi.org/10.1021/acssuschemeng.0c07965
    35. Ajaykrishna Ramasubramanian, Vitaliy Yurkiv, Tara Foroozan, Marco Ragone, Reza Shahbazian-Yassar, Farzad Mashayek. Stability of Solid-Electrolyte Interphase (SEI) on the Lithium Metal Surface in Lithium Metal Batteries (LMBs). ACS Applied Energy Materials 2020, 3 (11) , 10560-10567. https://doi.org/10.1021/acsaem.0c01605
    36. Jihyun Kim, Florian Buchner, R. Jürgen Behm. Interaction between Li, Ultrathin Adsorbed Ethylene Carbonate Films, and CoO(111) Thin Films: A Model Study of the Solid Electrolyte Interphase Formation at CoO Anodes. The Journal of Physical Chemistry C 2020, 124 (39) , 21476-21490. https://doi.org/10.1021/acs.jpcc.0c06015
    37. Bernardine L. D. Rinkel, David S. Hall, Israel Temprano, Clare P. Grey. Electrolyte Oxidation Pathways in Lithium-Ion Batteries. Journal of the American Chemical Society 2020, 142 (35) , 15058-15074. https://doi.org/10.1021/jacs.0c06363
    38. Ryan Jorn, Lauren Raguette, Shaniya Peart. Investigating the Mechanism of Lithium Transport at Solid Electrolyte Interphases. The Journal of Physical Chemistry C 2020, 124 (30) , 16261-16270. https://doi.org/10.1021/acs.jpcc.0c03018
    39. Xiaowei Xie, Kristin A. Persson, David W. Small. Incorporating Electronic Information into Machine Learning Potential Energy Surfaces via Approaching the Ground-State Electronic Energy as a Function of Atom-Based Electronic Populations. Journal of Chemical Theory and Computation 2020, 16 (7) , 4256-4270. https://doi.org/10.1021/acs.jctc.0c00217
    40. Luning Wang, Yuxiao Lin, Samantha DeCarlo, Yi Wang, Kevin Leung, Yue Qi, Kang Xu, Chunsheng Wang, Bryan W. Eichhorn. Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes. Chemistry of Materials 2020, 32 (9) , 3765-3775. https://doi.org/10.1021/acs.chemmater.9b05027
    41. Siqian Zhang, Min-Seok Jang, Jinwon Lee, Pillaiyar Puthiaraj, Wha-Seung Ahn. Zeolite-Like Metal Organic Framework (ZMOF) with a rho Topology for a CO2 Cycloaddition to Epoxides. ACS Sustainable Chemistry & Engineering 2020, 8 (18) , 7078-7086. https://doi.org/10.1021/acssuschemeng.0c00885
    42. Jaclyn E. Coyle, Michael T. Brumbach, Gabriel M. Veith, Christopher A. Apblett. Investigating the Chemical Reactivity of Lithium Silicate Model SEI Layers. The Journal of Physical Chemistry C 2020, 124 (15) , 8153-8161. https://doi.org/10.1021/acs.jpcc.0c01057
    43. Paul G. Kitz, Petr Novák, Erik J. Berg. Influence of Water Contamination on the SEI Formation in Li-Ion Cells: An Operando EQCM-D Study. ACS Applied Materials & Interfaces 2020, 12 (13) , 15934-15942. https://doi.org/10.1021/acsami.0c01642
    44. Joshua J. Walton, Takumi Hiasa, Hideyuki Kumita, Kazumasa Takeshi, Graham Sandford. Fluorocyanoesters as Additives for Lithium-Ion Battery Electrolytes. ACS Applied Materials & Interfaces 2020, 12 (13) , 15893-15902. https://doi.org/10.1021/acsami.9b23028
    45. Aditya Narayanan, Frieder Mugele, Michael H. G. Duits. Electrochemically Induced Changes in TiO2 and Carbon Films Studied with QCM-D. ACS Applied Energy Materials 2020, 3 (2) , 1775-1783. https://doi.org/10.1021/acsaem.9b02233
    46. William Huang, Peter M. Attia, Hansen Wang, Sara E. Renfrew, Norman Jin, Supratim Das, Zewen Zhang, David T. Boyle, Yuzhang Li, Martin Z. Bazant, Bryan D. McCloskey, William C. Chueh, Yi Cui. Evolution of the Solid–Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy. Nano Letters 2019, 19 (8) , 5140-5148. https://doi.org/10.1021/acs.nanolett.9b01515
    47. Yifang Zhang, Yiren Zhong, Shuquan Liang, Bo Wang, Xi Chen, Hailiang Wang. Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases. ACS Materials Letters 2019, 1 (2) , 254-259. https://doi.org/10.1021/acsmaterialslett.9b00167
    48. Jun Ming, Zhen Cao, Qian Li, Wandi Wahyudi, Wenxi Wang, Luigi Cavallo, Kang-Joon Park, Yang-Kook Sun, Husam N. Alshareef. Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters 2019, 4 (7) , 1584-1593. https://doi.org/10.1021/acsenergylett.9b00822
    49. Ajaykrishna Ramasubramanian, Vitaliy Yurkiv, Tara Foroozan, Marco Ragone, Reza Shahbazian-Yassar, Farzad Mashayek. Lithium Diffusion Mechanism through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries. The Journal of Physical Chemistry C 2019, 123 (16) , 10237-10245. https://doi.org/10.1021/acs.jpcc.9b00436
    50. Mulugeta Tesemma, Fu-Ming Wang, Atetegeb Meazah Haregewoin, Nur Laila Hamidah, P. Muhammad Hendra, Shawn D. Lin, Chorng-Shyan Chern, Quoc-Thai Pham, Chia-Hung Su. Investigation of the Dipole Moment Effects of Fluorofunctionalized Electrolyte Additives in a Lithium Ion Battery. ACS Sustainable Chemistry & Engineering 2019, 7 (7) , 6640-6653. https://doi.org/10.1021/acssuschemeng.8b05635
    51. Mariano Grünebaum, Annika Buchheit, Constantin Lürenbaum, Martin Winter, Hans-Dieter Wiemhöfer. Ester-Based Battery Solvents in Contact with Metallic Lithium: Effect of Water and Alcohol Impurities. The Journal of Physical Chemistry C 2019, 123 (12) , 7033-7044. https://doi.org/10.1021/acs.jpcc.9b00331
    52. Shuai Heng, Qiang Shi, Yan Wang, Qunting Qu, Jingyu Zhang, Guobin Zhu, Honghe Zheng. In Situ Development of Elastic Solid Electrolyte Interphase via Nanoregulation and Self-Polymerization of Sodium Itaconate on Graphite Surface. ACS Applied Energy Materials 2019, 2 (2) , 1336-1347. https://doi.org/10.1021/acsaem.8b01912
    53. Jingshu Hui, Noah B. Schorr, Srimanta Pakhira, Zihan Qu, Jose L. Mendoza-Cortes, Joaquín Rodríguez-López. Achieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphase. Journal of the American Chemical Society 2018, 140 (42) , 13599-13603. https://doi.org/10.1021/jacs.8b08907
    54. Florian Buchner, Katrin Forster-Tonigold, Jihyun Kim, Christiane Adler, Joachim Bansmann, Axel Groß, R. Jürgen Behm. Experimental and Computational Study on the Interaction of an Ionic Liquid Monolayer with Lithium on Pristine and Lithiated Graphite. The Journal of Physical Chemistry C 2018, 122 (33) , 18968-18981. https://doi.org/10.1021/acs.jpcc.8b04660
    55. Chunlei Li, Peng Wang, Shiyou Li, Dongni Zhao, Qiuping Zhao, Haining Liu, Xiaoling Cui. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complex. ACS Applied Materials & Interfaces 2018, 10 (30) , 25744-25753. https://doi.org/10.1021/acsami.8b05125
    56. Matthew M. Huie, David C. Bock, Lei Wang, Amy C. Marschilok, Kenneth J. Takeuchi, Esther S. Takeuchi. Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (19) , 10316-10326. https://doi.org/10.1021/acs.jpcc.8b01681
    57. Yonghyun Kwon, Kyoungsoo Kim, Hongjun Park, Jae Won Shin, Ryong Ryoo. Anomalously High Lithium Storage in Three-Dimensional Graphene-like Ordered Microporous Carbon Electrodes. The Journal of Physical Chemistry C 2018, 122 (9) , 4955-4962. https://doi.org/10.1021/acs.jpcc.8b00081
    58. Lan Xia, Saixi Lee, Yabei Jiang, Yonggao Xia, George Z. Chen, and Zhaoping Liu . Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega 2017, 2 (12) , 8741-8750. https://doi.org/10.1021/acsomega.7b01196
    59. S. J. Rezvani, F. Nobili, R. Gunnella, M. Ali, R. Tossici, S. Passerini, and A. Di Cicco . SEI Dynamics in Metal Oxide Conversion Electrodes of Li-Ion Batteries. The Journal of Physical Chemistry C 2017, 121 (47) , 26379-26388. https://doi.org/10.1021/acs.jpcc.7b08259
    60. Bharathy S. Parimalam, Alex D. MacIntosh, Rahul Kadam, Brett L. Lucht. Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF6. The Journal of Physical Chemistry C 2017, 121 (41) , 22733-22738. https://doi.org/10.1021/acs.jpcc.7b08433
    61. Miriam Steinhauer, Michael Stich, Mario Kurniawan, Beatrix-Kamelia Seidlhofer, Marcus Trapp, Andreas Bund, Norbert Wagner, and K. Andreas Friedrich . In Situ Studies of Solid Electrolyte Interphase (SEI) Formation on Crystalline Carbon Surfaces by Neutron Reflectometry and Atomic Force Microscopy. ACS Applied Materials & Interfaces 2017, 9 (41) , 35794-35801. https://doi.org/10.1021/acsami.7b09181
    62. Dmitry Bedrov, Oleg Borodin, and Justin B. Hooper . Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2017, 121 (30) , 16098-16109. https://doi.org/10.1021/acs.jpcc.7b04247
    63. Yan Wu, Li-Ying Wang, Yi-Fan Li, Zhen-Yang Zhao, Long-Wei Yin, Hui Li, and Yu-Jun Bai . KCl-Modified Graphite as High Performance Anode Material for Lithium-Ion Batteries with Excellent Rate Performance. The Journal of Physical Chemistry C 2017, 121 (24) , 13052-13058. https://doi.org/10.1021/acs.jpcc.7b03410
    64. Yougang Mao, Naba K. Karan, Myeonghun Song, Russell Hopson, Pradeep R. Guduru, and Li-Qiong Wang . Investigation of Solid Electrolyte Interphase Formed on Si Nanoparticle Composite Electrodes Using Hyperpolarized 129Xe Nuclear Magnetic Resonance Spectroscopy. Energy & Fuels 2017, 31 (5) , 5622-5628. https://doi.org/10.1021/acs.energyfuels.7b00250
    65. Chuan Wan, Suochang Xu, Mary Y. Hu, Ruiguo Cao, Jiangfeng Qian, Zhaohai Qin, Jun Liu, Karl T. Mueller, Ji-Guang Zhang, and Jian Zhi Hu . Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Interfaces 2017, 9 (17) , 14741-14748. https://doi.org/10.1021/acsami.6b15383
    66. Taeho Yoon, Mickdy S. Milien, Bharathy S. Parimalam, and Brett L. Lucht . Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. Chemistry of Materials 2017, 29 (7) , 3237-3245. https://doi.org/10.1021/acs.chemmater.7b00454
    67. Dongping Lu, Jinhui Tao, Pengfei Yan, Wesley A. Henderson, Qiuyan Li, Yuyan Shao, Monte L. Helm, Oleg Borodin, Gordon L. Graff, Bryant Polzin, Chong-Min Wang, Mark Engelhard, Ji-Guang Zhang, James J. De Yoreo, Jun Liu, and Jie Xiao . Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes. Nano Letters 2017, 17 (3) , 1602-1609. https://doi.org/10.1021/acs.nanolett.6b04766
    68. Nicholas P. Stadie, Shutao Wang, Kostiantyn V. Kravchyk, and Maksym V. Kovalenko . Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. ACS Nano 2017, 11 (2) , 1911-1919. https://doi.org/10.1021/acsnano.6b07995
    69. Alison L. Michan, Bharathy. S. Parimalam, Michal Leskes, Rachel N. Kerber, Taeho Yoon, Clare P. Grey, and Brett L. Lucht . Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials 2016, 28 (22) , 8149-8159. https://doi.org/10.1021/acs.chemmater.6b02282
    70. V. Winkler, G. Kilibarda, S. Schlabach, D. V. Szabó, T. Hanemann, and M. Bruns . Surface Analytical Study Regarding the Solid Electrolyte Interphase Composition of Nanoparticulate SnO2 Anodes for Li-Ion Batteries. The Journal of Physical Chemistry C 2016, 120 (43) , 24706-24714. https://doi.org/10.1021/acs.jpcc.6b06662
    71. Yunsong Li, Kevin Leung, and Yue Qi . Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Accounts of Chemical Research 2016, 49 (10) , 2363-2370. https://doi.org/10.1021/acs.accounts.6b00363
    72. Niloofar Ghanbari, Thomas Waldmann, Michael Kasper, Peter Axmann, and Margret Wohlfahrt-Mehrens . Inhomogeneous Degradation of Graphite Anodes in Li-Ion Cells: A Postmortem Study Using Glow Discharge Optical Emission Spectroscopy (GD-OES). The Journal of Physical Chemistry C 2016, 120 (39) , 22225-22234. https://doi.org/10.1021/acs.jpcc.6b07117
    73. Laura Benitez and Jorge M. Seminario . Electron Transport and Electrolyte Reduction in the Solid-Electrolyte Interphase of Rechargeable Lithium Ion Batteries with Silicon Anodes. The Journal of Physical Chemistry C 2016, 120 (32) , 17978-17988. https://doi.org/10.1021/acs.jpcc.6b06446
    74. Maral Bozorgchenani, Maryam Naderian, Hanieh Farkhondeh, Johannes Schnaidt, Benedikt Uhl, Joachim Bansmann, Axel Groß, R. Jürgen Behm, and Florian Buchner . Structure Formation and Thermal Stability of Mono- and Multilayers of Ethylene Carbonate on Cu(111): A Model Study of the Electrode|Electrolyte Interface. The Journal of Physical Chemistry C 2016, 120 (30) , 16791-16803. https://doi.org/10.1021/acs.jpcc.6b05012
    75. Alison L. Michan, Giorgio Divitini, Andrew J. Pell, Michal Leskes, Caterina Ducati, and Clare P. Grey . Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. Journal of the American Chemical Society 2016, 138 (25) , 7918-7931. https://doi.org/10.1021/jacs.6b02882
    76. Jingshu Hui, Mark Burgess, Jiarui Zhang, and Joaquín Rodríguez-López . Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid–Electrolyte Interphase Evolution. ACS Nano 2016, 10 (4) , 4248-4257. https://doi.org/10.1021/acsnano.5b07692
    77. Qinglin Zhang, Jie Pan, Peng Lu, Zhongyi Liu, Mark W. Verbrugge, Brian W. Sheldon, Yang-Tse Cheng, Yue Qi, and Xingcheng Xiao . Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Nano Letters 2016, 16 (3) , 2011-2016. https://doi.org/10.1021/acs.nanolett.5b05283
    78. Yingzhi Cui, Chunyu Du, Yunzhi Gao, Jie Yang, Lingling Zhang, Ting Guan, Lijie Yang, Xinqun Cheng, Pengjian Zuo, Yulin Ma, and Geping Yin . Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature. ACS Applied Materials & Interfaces 2016, 8 (8) , 5234-5242. https://doi.org/10.1021/acsami.5b10474
    79. Alison L. Michan, Michal Leskes, and Clare P. Grey . Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products. Chemistry of Materials 2016, 28 (1) , 385-398. https://doi.org/10.1021/acs.chemmater.5b04408
    80. Magali Gauthier, Thomas J. Carney, Alexis Grimaud, Livia Giordano, Nir Pour, Hao-Hsun Chang, David P. Fenning, Simon F. Lux, Odysseas Paschos, Christoph Bauer, Filippo Maglia, Saskia Lupart, Peter Lamp, and Yang Shao-Horn . Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4653-4672. https://doi.org/10.1021/acs.jpclett.5b01727
    81. Xin Teng, Chun Zhan, Ying Bai, Lu Ma, Qi Liu, Chuan Wu, Feng Wu, Yusheng Yang, Jun Lu, and Khalil Amine . In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. ACS Applied Materials & Interfaces 2015, 7 (41) , 22751-22755. https://doi.org/10.1021/acsami.5b08399
    82. Gabriel M. Veith, Mathieu Doucet, J. Kevin Baldwin, Robert L. Sacci, Tyler M. Fears, Yongqiang Wang, and James F. Browning . Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. The Journal of Physical Chemistry C 2015, 119 (35) , 20339-20349. https://doi.org/10.1021/acs.jpcc.5b06817
    83. Handan Yildirim, Alper Kinaci, Maria K. Y. Chan, and Jeffrey P. Greeley . First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF. ACS Applied Materials & Interfaces 2015, 7 (34) , 18985-18996. https://doi.org/10.1021/acsami.5b02904
    84. Kjell Schroder, Judith Alvarado, Thomas A. Yersak, Juchuan Li, Nancy Dudney, Lauren J. Webb, Ying Shirley Meng, and Keith J. Stevenson . The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16) , 5531-5542. https://doi.org/10.1021/acs.chemmater.5b01627
    85. Saul Perez-Beltran, Gustavo E. Ramírez-Caballero, and Perla B. Balbuena . First-Principles Calculations of Lithiation of a Hydroxylated Surface of Amorphous Silicon Dioxide. The Journal of Physical Chemistry C 2015, 119 (29) , 16424-16431. https://doi.org/10.1021/acs.jpcc.5b02992
    86. Ilya A. Shkrob, James F. Wishart, and Daniel P. Abraham . What Makes Fluoroethylene Carbonate Different?. The Journal of Physical Chemistry C 2015, 119 (27) , 14954-14964. https://doi.org/10.1021/acs.jpcc.5b03591
    87. Daniel M. Seo, Stefanie Reininger, Mary Kutcher, Kaitlin Redmond, William B. Euler, and Brett L. Lucht . Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes. The Journal of Physical Chemistry C 2015, 119 (25) , 14038-14046. https://doi.org/10.1021/acs.jpcc.5b03694
    88. Bo Zhang, Michael Metzger, Sophie Solchenbach, Martin Payne, Stefano Meini, Hubert A. Gasteiger, Arnd Garsuch, and Brett L. Lucht . Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation. The Journal of Physical Chemistry C 2015, 119 (21) , 11337-11348. https://doi.org/10.1021/acs.jpcc.5b00072
    89. Bruno G. Nicolau, Natalia Garcı́a-Rey, Bogdan Dryzhakov, and Dana D. Dlott . Interfacial Processes of a Model Lithium Ion Battery Anode Observed, in Situ, with Vibrational Sum-Frequency Generation Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (19) , 10227-10233. https://doi.org/10.1021/acs.jpcc.5b01290
    90. Kai-Yang Niu, Feng Lin, Liang Fang, Dennis Nordlund, Runzhe Tao, Tsu-Chien Weng, Marca M. Doeff, and Haimei Zheng . Structural and Chemical Evolution of Amorphous Nickel Iron Complex Hydroxide upon Lithiation/Delithiation. Chemistry of Materials 2015, 27 (5) , 1583-1589. https://doi.org/10.1021/cm5041375
    91. Mitchell T. Ong, Osvalds Verners, Erik W. Draeger, Adri C. T. van Duin, Vincenzo Lordi, and John E. Pask . Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics. The Journal of Physical Chemistry B 2015, 119 (4) , 1535-1545. https://doi.org/10.1021/jp508184f
    92. Matilda Klett, Pontus Svens, Carl Tengstedt, Antoine Seyeux, Jolanta Światowska, Göran Lindbergh, and Rakel Wreland Lindström . Uneven Film Formation across Depth of Porous Graphite Electrodes in Cycled Commercial Li-Ion Batteries. The Journal of Physical Chemistry C 2015, 119 (1) , 90-100. https://doi.org/10.1021/jp509665e
    93. Lénaïc Madec, Jian Xia, Rémi Petibon, Kathlyne J. Nelson, Jon-Paul Sun, Ian G. Hill, and Jeff R. Dahn . Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. The Journal of Physical Chemistry C 2014, 118 (51) , 29608-29622. https://doi.org/10.1021/jp509731y
    94. Kang Xu . Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114 (23) , 11503-11618. https://doi.org/10.1021/cr500003w
    95. Ilya A. Shkrob, A. Jeremy Kropf, Timothy W. Marin, Yan Li, Oleg G. Poluektov, Jens Niklas, and Daniel P. Abraham . Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries. The Journal of Physical Chemistry C 2014, 118 (42) , 24335-24348. https://doi.org/10.1021/jp507833u
    96. Oleg Borodin and Dmitry Bedrov . Interfacial Structure and Dynamics of the Lithium Alkyl Dicarbonate SEI Components in Contact with the Lithium Battery Electrolyte. The Journal of Physical Chemistry C 2014, 118 (32) , 18362-18371. https://doi.org/10.1021/jp504598n
    97. Bingbing Tian, Jolanta Światowska, Vincent Maurice, Sandrine Zanna, Antoine Seyeux, Lorena H. Klein, and Philippe Marcus . Aging-Induced Chemical and Morphological Modifications of Thin Film Iron Oxide Electrodes for Lithium-Ion Batteries. Langmuir 2014, 30 (12) , 3538-3547. https://doi.org/10.1021/la404525v
    98. Arthur v. Cresce, Selena M. Russell, David R. Baker, Karen J. Gaskell, and Kang Xu . In Situ and Quantitative Characterization of Solid Electrolyte Interphases. Nano Letters 2014, 14 (3) , 1405-1412. https://doi.org/10.1021/nl404471v
    99. Mengyun Nie, Daniel P. Abraham, Daniel M. Seo, Yanjing Chen, Arijit Bose, and Brett L. Lucht . Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. The Journal of Physical Chemistry C 2013, 117 (48) , 25381-25389. https://doi.org/10.1021/jp409765w
    100. Ilya A. Shkrob, Ye Zhu, Timothy W. Marin, and Daniel Abraham . Reduction of Carbonate Electrolytes and the Formation of Solid-Electrolyte Interface (SEI) in Lithium-Ion Batteries. 2. Radiolytically Induced Polymerization of Ethylene Carbonate. The Journal of Physical Chemistry C 2013, 117 (38) , 19270-19279. https://doi.org/10.1021/jp406273p
    Load more citations

    The Journal of Physical Chemistry C

    Cite this: J. Phys. Chem. C 2013, 117, 3, 1257–1267
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp3118055
    Published January 4, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.