Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Thermal Rectification in Three-Dimensional Asymmetric Nanostructure
My Activity
CONTENT TYPES
    Letter

    Thermal Rectification in Three-Dimensional Asymmetric Nanostructure
    Click to copy article linkArticle link copied!

    View Author Information
    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
    Universal Technology Corporation, 1270 N. Fairfield Road, Dayton, Ohio 45432, United States
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 7, 3491–3496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl301006y
    Published June 20, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Previously, thermal rectification has been reported in several low-dimensional shape-asymmetric nanomaterials. In this Letter, we demonstrate that a three-dimensional crystalline material with an asymmetric shape also displays as strong thermal rectification as low-dimensional materials do. The observed rectification is attributed to the stronger temperature dependence of vibration density of states in the narrower region of the asymmetric material, resulting from the small number of atomic degrees of freedom directly interacting with the thermostat. We also demonstrate that the often reported “device shape asymmetry” is not a sufficient condition for thermal rectification. Specifically, the size asymmetry in boundary thermal contacts is equally important toward determining the magnitude of thermal rectification. When the boundary thermal contacts retain the same size asymmetry as the nanomaterial, the overall system displays notable thermal rectification, in accordance with existing literature. However, when the wider region of the asymmetric nanomaterial is partially thermostatted by a smaller sized contact, thermal rectification decreases dramatically and even changes direction.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 67 publications.

    1. Ryan C. Ng, Alexandros El Sachat, Julianna Jaramillo-Fernandez, Clivia M. Sotomayor-Torres, Emigdio Chavez-Angel. Far-Field Radiative Thermal Rectification Based on Asymmetric Emissivity. ACS Applied Optical Materials 2024, 2 (6) , 973-979. https://doi.org/10.1021/acsaom.3c00235
    2. Xue-Kun Chen, Min Pang, Tong Chen, Dan Du, Ke-Qiu Chen. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Applied Materials & Interfaces 2020, 12 (13) , 15517-15526. https://doi.org/10.1021/acsami.9b22498
    3. Hao Ma and Zhiting Tian . Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive versus Ballistic Transport. Nano Letters 2018, 18 (1) , 43-48. https://doi.org/10.1021/acs.nanolett.7b02867
    4. Xueming Yang, Dapeng Yu, and Bingyang Cao . Giant Thermal Rectification from Single-Carbon Nanotube–Graphene Junction. ACS Applied Materials & Interfaces 2017, 9 (28) , 24078-24084. https://doi.org/10.1021/acsami.7b04464
    5. Xueming Yang, Dapeng Yu, Bingyang Cao, and Albert C. To . Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube–Graphene Intramolecular Junctions. ACS Applied Materials & Interfaces 2017, 9 (1) , 29-35. https://doi.org/10.1021/acsami.6b12853
    6. Yan Wang, Ajit Vallabhaneni, Jiuning Hu, Bo Qiu, Yong P. Chen, and Xiulin Ruan . Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures. Nano Letters 2014, 14 (2) , 592-596. https://doi.org/10.1021/nl403773f
    7. Renjie Hua, Yunlei Jiang, Zhiguo Zhao, Lei Shi, Yiwei Chen, Suxia Liang, Ruo-Yu Dong, Yingru Song, Yuan Dong. Subdiffusive and superdiffusive phonon transport induced significant thermal rectification across a one-dimensional Kapitza interface. International Journal of Heat and Mass Transfer 2024, 234 , 126113. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126113
    8. M Romero-Bastida, A Poceros Varela. Thermal rectification in segmented Frenkel–Kontorova lattices with asymmetric next-nearest-neighbor interactions. Journal of Statistical Mechanics: Theory and Experiment 2024, 2024 (8) , 083202. https://doi.org/10.1088/1742-5468/ad5c5a
    9. Zhibo Xing, Yingguang Liu, Ning Wu, Shuo Wang, Xutao Zhang. Prediction of high thermal rectification behavior in carbon/C 3 N heteronanotubes based on nonequilibrium molecular dynamics simulations. Physical Chemistry Chemical Physics 2024, 26 (32) , 21727-21738. https://doi.org/10.1039/D4CP01890G
    10. Haiying Yang, Yinjie Shen, Lin Li, Yichen Pan, Ping Yang. Surface modification to induce efficient heat transfer at graphene/silicon heterointerface. Applied Thermal Engineering 2024, 238 , 121913. https://doi.org/10.1016/j.applthermaleng.2023.121913
    11. J. Alvarez-Quintana. Solid state thermal rectification by chemical pressure tuning of magnetic properties in perovskites. Thermal Science and Engineering Progress 2023, 46 , 102169. https://doi.org/10.1016/j.tsep.2023.102169
    12. Fu-Ye Du, Wang Zhang, Hui-Qiong Wang, Jin-Cheng Zheng. Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier. Chinese Physics B 2023, 32 (6) , 064402. https://doi.org/10.1088/1674-1056/acc78c
    13. Martí Raya-Moreno, Xavier Cartoixà, Jesús Carrete. BTE-Barna: An extension of almaBTE for thermal simulation of devices based on 2D materials. Computer Physics Communications 2022, 281 , 108504. https://doi.org/10.1016/j.cpc.2022.108504
    14. Yufeng Zhang, Qian Lv, Haidong Wang, Shuaiyi Zhao, Qihua Xiong, Ruitao Lv, Xing Zhang. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 2022, 378 (6616) , 169-175. https://doi.org/10.1126/science.abq0883
    15. Yenal Karaaslan. Thermal transport properties of hexagonal monolayer group-III nitride nanoribbons. Physica B: Condensed Matter 2022, 640 , 414022. https://doi.org/10.1016/j.physb.2022.414022
    16. Xingxing Zhang, Song Duan, Dongqin Zheng, Weirong Zhong. Collective transport of ions through carbon nanotubes under alternating electric field. Acta Mechanica 2022, 233 (8) , 3423-3431. https://doi.org/10.1007/s00707-022-03246-y
    17. Ryan C. Ng, Alejandro Castro-Alvarez, Clivia M. Sotomayor-Torres, Emigdio Chávez-Ángel. Thermal Rectification and Thermal Logic Gates in Graded Alloy Semiconductors. Energies 2022, 15 (13) , 4685. https://doi.org/10.3390/en15134685
    18. Bing Yang, Yanqi Yang, Lin Li, Ping Yang. Study on thermal properties of triangular graphene with different boundary types. Micro and Nanostructures 2022, 166 , 207213. https://doi.org/10.1016/j.micrna.2022.207213
    19. Jing Lyu, Zhizhi Sheng, Yingying Xu, Chenming Liu, Xuetong Zhang. Nanoporous Kevlar Aerogel Confined Phase Change Fluids Enable Super‐Flexible Thermal Diodes. Advanced Functional Materials 2022, 32 (19) https://doi.org/10.1002/adfm.202200137
    20. Tian Li, Weitao Jiang, Yue Zhang, Baotong Li, Lanlan Wang, Dong Niu, Hongzhong Liu, Lei Yin, Yongsheng Shi, Bangdao Chen, Jinju Chen, Xiaokang Liu, Donglin Peng. Thermal Diodes Based on Fractal Structures with Tunable Thermal Threshold. Advanced Functional Materials 2022, 32 (17) https://doi.org/10.1002/adfm.202111229
    21. Guofu Chen, Wenlong Bao, Jiao Chen, Zhaoliang Wang. Thermal rectification effect of pristine graphene induced by vdW heterojunction substrate. Carbon 2022, 190 , 170-182. https://doi.org/10.1016/j.carbon.2022.01.012
    22. Fayong Liu, Manoharan Muruganathan, Yu Feng, Shinichi Ogawa, Yukinori Morita, Chunmeng Liu, Jiayu Guo, Marek Schmidt, Hiroshi Mizuta. Thermal rectification on asymmetric suspended graphene nanomesh devices. Nano Futures 2021, 5 (4) , 045002. https://doi.org/10.1088/2399-1984/ac36b5
    23. M. A. Cardona-Castro, J. A. Leon-Gil, J. Alvarez-Quintana. A novel enhanced performance thermal rectifier based on NPG functionalized carbon fibers. Materials Advances 2021, 2 (18) , 5942-5954. https://doi.org/10.1039/D1MA00496D
    24. J Alvarez-Quintana. Anisotropic thermal conductivity in lattice transition thermal rectifiers. Journal of Physics D: Applied Physics 2021, 54 (18) , 185301. https://doi.org/10.1088/1361-6463/abe1eb
    25. Sreyash Sarkar, Elyes Nefzaoui, Philippe Basset, Tarik Bourouina. Far-field radiative thermal rectification with bulk materials. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 266 , 107573. https://doi.org/10.1016/j.jqsrt.2021.107573
    26. Timm Swoboda, Katja Klinar, Ananth Saran Yalamarthy, Andrej Kitanovski, Miguel Muñoz Rojo. Solid‐State Thermal Control Devices. Advanced Electronic Materials 2021, 7 (3) https://doi.org/10.1002/aelm.202000625
    27. Leonardo Medrano Sandonas, Álvaro Rodríguez Méndez, Rafael Gutierrez, Gianaurelio Cuniberti, Vladimiro Mujica. Nanoscale Phononic Analog of the Ranque-Hilsch Vortex Tube. Physical Review Applied 2021, 15 (3) https://doi.org/10.1103/PhysRevApplied.15.034008
    28. M. Romero-Bastida, Ricardo Ríos-Cortes. Thermal rectification in one-dimensional lattices with nonlinear system–reservoir coupling. Physica A: Statistical Mechanics and its Applications 2020, 557 , 124863. https://doi.org/10.1016/j.physa.2020.124863
    29. Zhiliang Pan, Lin Yang, Yi Tao, Yanglin Zhu, Ya-Qiong Xu, Zhiqiang Mao, Deyu Li. Net negative contributions of free electrons to the thermal conductivity of NbSe 3 nanowires. Physical Chemistry Chemical Physics 2020, 22 (37) , 21131-21138. https://doi.org/10.1039/D0CP03484C
    30. Pengfei Jiang, Shiqian Hu, Yulou Ouyang, Weijun Ren, Cuiqian Yu, Zhongwei Zhang, Jie Chen. Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact. Journal of Applied Physics 2020, 127 (23) https://doi.org/10.1063/5.0004484
    31. Xiang-Shui Wu, Wen-Ting Tang, Xiang-Fan Xu, . Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica 2020, 69 (19) , 196602. https://doi.org/10.7498/aps.69.20200709
    32. Jesús Carrete, Miquel López-Suárez, Martí Raya-Moreno, Anton S. Bochkarev, Miquel Royo, Georg K. H. Madsen, Xavier Cartoixà, Natalio Mingo, Riccardo Rurali. Phonon transport across crystal-phase interfaces and twin boundaries in semiconducting nanowires. Nanoscale 2019, 11 (34) , 16007-16016. https://doi.org/10.1039/C9NR05274G
    33. Xue-Kun Chen, Zhong-Xiang Xie, Yong Zhang, Yuan-Xiang Deng, Tong-Hua Zou, Jun Liu, Ke-Qiu Chen. Highly efficient thermal rectification in carbon/boron nitride heteronanotubes. Carbon 2019, 148 , 532-539. https://doi.org/10.1016/j.carbon.2019.03.073
    34. Emmanuel Pereira. Thermal rectification in classical and quantum systems: Searching for efficient thermal diodes. EPL (Europhysics Letters) 2019, 126 (1) , 14001. https://doi.org/10.1209/0295-5075/126/14001
    35. Emmanuel Pereira. Perfect thermal rectification in a many-body quantum Ising model. Physical Review E 2019, 99 (3) https://doi.org/10.1103/PhysRevE.99.032116
    36. J. A. Leon-Gil, J. J. Martinez-Flores, J. Alvarez-Quintana. A hybrid thermal diode based on phase transition materials. Journal of Materials Science 2019, 54 (4) , 3211-3221. https://doi.org/10.1007/s10853-018-3059-9
    37. Yuan Dong, Chenghao Diao, Yingru Song, Haojia Chi, David J. Singh, Jian Lin. Molecular Bridge Thermal Diode Enabled by Vibrational Mismatch. Physical Review Applied 2019, 11 (2) https://doi.org/10.1103/PhysRevApplied.11.024043
    38. Hexin Liu, Haidong Wang, Xing Zhang. A Brief Review on the Recent Experimental Advances in Thermal Rectification at the Nanoscale. Applied Sciences 2019, 9 (2) , 344. https://doi.org/10.3390/app9020344
    39. J. J. Martinez-Flores, Dinesh Varshney, J. Alvarez-Quintana. Thermal rectification via sequential deactivation of magnons. Applied Physics Letters 2018, 113 (26) https://doi.org/10.1063/1.5063479
    40. Xueming Yang, Jiangxin Xu, Sihan Wu, Dapeng Yu, Bingyang Cao. The effect of structural asymmetry on thermal rectification in nanostructures. Journal of Physics: Condensed Matter 2018, 30 (43) , 435305. https://doi.org/10.1088/1361-648X/aae3b9
    41. Xiao-Jun Li, Ning Li, Fei Ren, Kang Han Wang, Chong Lek Koh, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng. Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials. Journal of Materials Science 2018, 53 (19) , 13955-13965. https://doi.org/10.1007/s10853-018-2462-6
    42. Xue-Kun Chen, Jun Liu, Zhong-Xiang Xie, Yong Zhang, Yuan-Xiang Deng, Ke-Qiu Chen. A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions. Applied Physics Letters 2018, 113 (12) https://doi.org/10.1063/1.5053233
    43. Tadeh Avanessian, Gisuk Hwang. Thermal diode using controlled capillary in heterogeneous nanopores. International Journal of Heat and Mass Transfer 2018, 124 , 201-209. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.039
    44. Xue-Kun Chen, Ji-Wen Hu, Xi-Jun Wu, Peng Jia, Zhi-Hua Peng, Ke-Qiu Chen. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures. Journal of Physics D: Applied Physics 2018, 51 (8) , 085103. https://doi.org/10.1088/1361-6463/aaa7c2
    45. Yu Cao, Chao Liu, Hao Zhang, Xiaoxiao Xu, Qibin Li. Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Applied Thermal Engineering 2017, 126 , 330-338. https://doi.org/10.1016/j.applthermaleng.2017.07.104
    46. Leonardo Medrano Sandonas, G. Cuba-Supanta, Rafael Gutierrez, Arezoo Dianat, Carlos V. Landauro, Gianaurelio Cuniberti. Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering. Carbon 2017, 124 , 642-650. https://doi.org/10.1016/j.carbon.2017.09.025
    47. Xiuqiang Li, Yueyang Liu, Qinghui Zheng, Xuejun Yan, Xin Yang, Guangxin Lv, Ning Xu, Yuxi Wang, Minghui Lu, Keqiu Chen, Jia Zhu. Anomalous thermal anisotropy of two-dimensional nanoplates of vertically grown MoS2. Applied Physics Letters 2017, 111 (16) https://doi.org/10.1063/1.4999248
    48. Yue-Yang Liu, Bo-Lin Li, Shi-Zhang Chen, Xiangwei Jiang, Ke-Qiu Chen. Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons. Applied Physics Letters 2017, 111 (13) https://doi.org/10.1063/1.4999127
    49. Joel B. Puga, Bernardo D. Bordalo, Daniel J. Silva, Miguel M. Dias, João H. Belo, João P. Araújo, Joana C.R.E. Oliveira, André M. Pereira, João Ventura. Novel thermal switch based on magnetic nanofluids with remote activation. Nano Energy 2017, 31 , 278-285. https://doi.org/10.1016/j.nanoen.2016.11.031
    50. M. Chau, B. A. F. Kopera, V. R. Machado, S. M. Tehrani, M. A. Winnik, E. Kumacheva, M. Retsch. Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons 2017, 4 (2) , 236-241. https://doi.org/10.1039/C6MH00495D
    51. Zhen-Qiang Ye, Bing-Yang Cao. Thermal rectification at the bimaterial nanocontact interface. Nanoscale 2017, 9 (32) , 11480-11487. https://doi.org/10.1039/C7NR02696J
    52. Xiaomin Gu, Shudong Zhang, Mengya Shang, Tingting Zhao, Nian Li, Haifeng Li, Zhenyang Wang. Asymmetric geometry composites arranged between parallel aligned and interconnected graphene structures for highly efficient thermal rectification. RSC Advances 2017, 7 (18) , 10683-10687. https://doi.org/10.1039/C7RA00118E
    53. Zan Wang. Thermal Transport and Rectification Properties of Bamboo-Like SiC Polytypes Nanowires. Journal of Nanomaterials 2017, 2017 , 1-11. https://doi.org/10.1155/2017/5038978
    54. Kedong Bi, Yadong Liu, Chunwei Zhang, Jiapeng Li, Minhua Chen, Yunfei Chen. Thermal transport across symmetric and asymmetric solid–solid interfaces. Applied Physics A 2016, 122 (10) https://doi.org/10.1007/s00339-016-0421-0
    55. M.G. Vachhani, Tarika K. Patel, P.N. Gajjar. Thermal characteristics of a microscopic model of thermal transistor. International Journal of Thermal Sciences 2016, 108 , 159-164. https://doi.org/10.1016/j.ijthermalsci.2016.05.008
    56. Yue-Yang Liu, Bo-Lin Li, Wu-Xing Zhou, Ke-Qiu Chen. Triggering piezoelectricity directly by heat to produce alternating electric voltage. Applied Physics Letters 2016, 109 (11) https://doi.org/10.1063/1.4962904
    57. Zhongwei Zhang, Yuanping Chen, Yuee Xie, Shengbai Zhang. Transition of thermal rectification in silicon nanocones. Applied Thermal Engineering 2016, 102 , 1075-1080. https://doi.org/10.1016/j.applthermaleng.2016.03.083
    58. Xue-Kun Chen, Zhong-Xiang Xie, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen. Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 2016, 100 , 492-500. https://doi.org/10.1016/j.carbon.2016.01.045
    59. Yi Ming, Hui-Min Li, Ze-Jun Ding. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling. Physical Review E 2016, 93 (3) https://doi.org/10.1103/PhysRevE.93.032127
    60. Yue-Yang Liu, Wu-Xing Zhou, Ke-Qiu Chen. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep17525
    61. Teng Zhang, Tengfei Luo. Giant Thermal Rectification from Polyethylene Nanofiber Thermal Diodes. Small 2015, 11 (36) , 4657-4665. https://doi.org/10.1002/smll.201501127
    62. Liang Wei, Zhi-Cheng Xu, Dong-Qin Zheng, Wei Zhang, Wei-Rong Zhong. Heat Transport in Double-Bond Linear Chains of Fullerenes. Chinese Physics Letters 2015, 32 (7) , 076501. https://doi.org/10.1088/0256-307X/32/7/076501
    63. Sophia R. Sklan. Splash, pop, sizzle: Information processing with phononic computing. AIP Advances 2015, 5 (5) https://doi.org/10.1063/1.4919584
    64. Leonardo Medrano Sandonas, Rafael Gutierrez, Arezoo Dianat, Giovanni Cuniberti. Engineering thermal rectification in MoS 2 nanoribbons: a non-equilibrium molecular dynamics study. RSC Advances 2015, 5 (67) , 54345-54351. https://doi.org/10.1039/C5RA05733G
    65. Yue-Yang Liu, Wu-Xing Zhou, Li-Ming Tang, Ke-Qiu Chen. An important mechanism for thermal rectification in graded nanowires. Applied Physics Letters 2014, 105 (20) https://doi.org/10.1063/1.4902427
    66. Kiarash Gordiz, S. Mehdi Vaez Allaei. Thermal rectification in pristine-hydrogenated carbon nanotube junction: A molecular dynamics study. Journal of Applied Physics 2014, 115 (16) https://doi.org/10.1063/1.4873124
    67. Eric Pop, Vikas Varshney, Ajit K. Roy. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin 2012, 37 (12) , 1273-1281. https://doi.org/10.1557/mrs.2012.203

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 7, 3491–3496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl301006y
    Published June 20, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1692

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.