Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles
My Activity
CONTENT TYPES
    Article

    Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles
    Click to copy article linkArticle link copied!

    View Author Information
    Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
    § Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
    Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542
    Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542
    *Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2013, 7, 12, 10985–10994
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4046002
    Published November 22, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Monolayer WS2 (1L-WS2), with a direct band gap, provides an ideal platform to investigate unique properties of two-dimensional semiconductors. In this work, light emission of a 1L-WS2 triangle has been studied by using steady-state, time-resolved, and temperature-dependent photoluminescence (PL) spectroscopy. Two groups of 1L-WS2 triangles have been grown by chemical vapor deposition, which exhibit nonuniform and uniform PL, respectively. Observed nonuniform PL features, i.e., quenching and blue-shift in certain areas, are caused by structural imperfection and n-doping induced by charged defects. Uniform PL is found to be intrinsic, intense, and nonblinking, which are attributed to high crystalline quality. The binding energy of the A-exciton is extracted experimentally, which gives direct evidence for the large excitonic effect in 1L-WS2. These superior photon emission features make 1L-WS2 an appealing material for optoelectronic applications such as novel light-emitting and biosensing devices.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Optical and AFM images of as-grown WS2 samples; Raman spectra of mono-, bi-, and trilayer and bulk WS2; comparison of PL positions and widths as a function of the number of layers from previous reports and the present work; optical spectra of the R6G solution and the R6G film; relative intensities of 1L-WS2 and 1L-MoS2 samples at λex = 457 nm; PL spectra from the edge and center regions of 1L-WS2 triangles from two groups; AFM and Raman mapping images of 1L-WS2 from two groups; PL time-trace data; electrical transport characteristics; optical images and PL spectrum from exfoliated 1L-WS2; schematics of CVD setups; temperature-dependent PL spectra; temperature dependence of PL widths of 1L-WS2 from group B; fit of PL spectra and the fitting parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 284 publications.

    1. Suvodeep Paul, Saheb Karak, Saswata Talukdar, Devesh Negi, Surajit Saha. Influence of Edges and Interlayer Electron–phonon Coupling in WS2/h-BN Heterostructure. ACS Applied Materials & Interfaces 2024, 16 (30) , 40077-40085. https://doi.org/10.1021/acsami.4c02629
    2. Haney Lee, Eunseo Heo, Hyeonseok Yoon. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. Langmuir 2023, 39 (51) , 18678-18695. https://doi.org/10.1021/acs.langmuir.3c02418
    3. Rakesh K. Prasad, Manisha Kumari, Dilip K. Singh. Controlled Nucleation Sites with Large Coverage Area for Continuous Monolayered WS2 Growth by Using the CVD Process. Crystal Growth & Design 2023, 23 (11) , 7744-7753. https://doi.org/10.1021/acs.cgd.3c00527
    4. Peter Walke, Reelika Kaupmees, Maarja Grossberg-Kuusk, Jüri Krustok. Unusual Defect-Related Room-Temperature Emission from WS2 Monolayers Synthesized through a Potassium-Based Precursor. ACS Omega 2023, 8 (41) , 37958-37970. https://doi.org/10.1021/acsomega.3c03476
    5. Rakesh K. Prasad, Koushik Ghosh, Pravat K. Giri, Dai-Sik Kim, Dilip K. Singh. High-Efficiency Photodetector Based on a CVD-Grown WS2 Monolayer. ACS Applied Electronic Materials 2023, 5 (7) , 3634-3640. https://doi.org/10.1021/acsaelm.3c00366
    6. Z. A. Thiehmed, T. M. Altahtamouni. Morphology Control of WS2 Nanoflakes Using Chemical Vapor Deposition for Improving the Photocatalytic Activity of the WS2/TiO2 Heterostructure. The Journal of Physical Chemistry C 2023, 127 (24) , 11600-11608. https://doi.org/10.1021/acs.jpcc.3c01836
    7. Lin Pan, Peng Miao, Anke Horneber, Alfred J. Meixner, Pierre-Michel Adam, Dai Zhang. Nanometer-Scale Structure Property of WS2 Flakes by Nonlinear Optical Microscopy: Implications for Optical Frequency Converted Signals. ACS Applied Nano Materials 2023, 6 (8) , 6467-6473. https://doi.org/10.1021/acsanm.3c00804
    8. Jinan Xie, Guodong Meng, Baiyi Chen, Zhe Li, Zongyou Yin, Yonghong Cheng. Vapor–Liquid–Solid Growth of Morphology-Tailorable WS2 toward P-Type Monolayer Field-Effect Transistors. ACS Applied Materials & Interfaces 2022, 14 (40) , 45716-45724. https://doi.org/10.1021/acsami.2c13812
    9. Jundong Zhang, Baojun Pan, Weitao Su, Lijie Zhang, Fei Chen, Hong-Wei Lu. Laser Patterning of the Sb2O3 Atomic Thin Layer Assisted by Near Field Heating. ACS Applied Nano Materials 2022, 5 (6) , 7877-7884. https://doi.org/10.1021/acsanm.2c00904
    10. Rui Xu, Yingzhuo Lun, Lan Meng, Fei Pang, Yuhao Pan, Zhiyue Zheng, Le Lei, Sabir Hussain, Yan Jun Li, Yasuhiro Sugawara, Jiawang Hong, Wei Ji, Zhihai Cheng. Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes. The Journal of Physical Chemistry C 2022, 126 (16) , 7184-7192. https://doi.org/10.1021/acs.jpcc.1c10538
    11. Yuxiang Sang, Jiaoyang Guo, Hao Chen, Wanli Yang, Xin Chen, Fang Liu, Xingjun Wang. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (15) , 6637-6645. https://doi.org/10.1021/acs.jpcc.2c00732
    12. Madan Sharma, Aditya Singh, Pallavi Aggarwal, Rajendra Singh. Large-Area Transfer of 2D TMDCs Assisted by a Water-Soluble Layer for Potential Device Applications. ACS Omega 2022, 7 (14) , 11731-11741. https://doi.org/10.1021/acsomega.1c06855
    13. Xuewen Zhang, Lishu Wu, Weihuang Yang, Shun Feng, Xu Wang, Xingwang Zhang, Jingzhi Shang, Wei Huang, Ting Yu. Localization of Laterally Confined Modes in a 2D Semiconductor Microcavity. ACS Nano 2022, 16 (3) , 4940-4946. https://doi.org/10.1021/acsnano.2c00914
    14. Ziyu Luo, Weihao Zheng, Nannan Luo, Bo Liu, Biyuan Zheng, Xing Yang, Delang Liang, Junyu Qu, Huawei Liu, Ying Chen, Ying Jiang, Shula Chen, Xiaolong Zou, Anlian Pan. Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS2 Monolayers. Nano Letters 2022, 22 (5) , 2112-2119. https://doi.org/10.1021/acs.nanolett.2c00462
    15. Abhilasha Bora, Larionette P. L. Mawlong, P. K. Giri. Highly Suppressed Dark Current and Fast Photoresponse from Au Nanoparticle-Embedded, Si/Au/WS2 Quantum-Dot-Based, Self-Biased Schottky Photodetectors. ACS Applied Electronic Materials 2021, 3 (11) , 4891-4904. https://doi.org/10.1021/acsaelm.1c00727
    16. Shuangping Han, Xilong Liang, Chengbing Qin, Yan Gao, Yunrui Song, Shen Wang, Xingliang Su, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Mingyong Jing, Liantuan Xiao, Suotang Jia. Criteria for Assessing the Interlayer Coupling of van der Waals Heterostructures Using Ultrafast Pump–Probe Photoluminescence Spectroscopy. ACS Nano 2021, 15 (8) , 12966-12974. https://doi.org/10.1021/acsnano.1c01787
    17. Michele Magnozzi, Theo Pflug, Marzia Ferrera, Simona Pace, Lorenzo Ramó, Markus Olbrich, Paolo Canepa, Hasret Ağircan, Alexander Horn, Stiven Forti, Ornella Cavalleri, Camilla Coletti, Francesco Bisio, Maurizio Canepa. Local Optical Properties in CVD-Grown Monolayer WS2 Flakes. The Journal of Physical Chemistry C 2021, 125 (29) , 16059-16065. https://doi.org/10.1021/acs.jpcc.1c04287
    18. Jiaqi Shao, Fei Chen, Weitao Su, Yijie Zeng, Hong-Wei Lu. Multimodal Nanoscopic Study of Atomic Diffusion and Related Localized Optoelectronic Response of WS2/MoS2 Lateral Heterojunctions. ACS Applied Materials & Interfaces 2021, 13 (17) , 20361-20370. https://doi.org/10.1021/acsami.1c03061
    19. Fabian Bertoldo, Raymond R. Unocic, Yu-Chuan Lin, Xiahan Sang, Alexander A. Puretzky, Yiling Yu, Denys Miakota, Christopher M. Rouleau, Jørgen Schou, Kristian S. Thygesen, David B. Geohegan, Stela Canulescu. Intrinsic Defects in MoS2 Grown by Pulsed Laser Deposition: From Monolayers to Bilayers. ACS Nano 2021, 15 (2) , 2858-2868. https://doi.org/10.1021/acsnano.0c08835
    20. Minseong Kim, Jihyung Seo, Jihyun Kim, Jong Sung Moon, Junghyun Lee, Je-Hyung Kim, Joohoon Kang, Hyesung Park. High-Crystalline Monolayer Transition Metal Dichalcogenides Films for Wafer-Scale Electronics. ACS Nano 2021, 15 (2) , 3038-3046. https://doi.org/10.1021/acsnano.0c09430
    21. Yi Yao, Fei Chen, Li Fu, Su Ding, Shichao Zhao, Qi Zhang, Weitao Su, Kaixin Song. Stoichiometry-Modulated Resonant Raman Spectroscopy of WS2(1–x)Se2x-Alloyed Monolayer Nanosheets. The Journal of Physical Chemistry C 2020, 124 (37) , 20547-20554. https://doi.org/10.1021/acs.jpcc.0c05399
    22. Rasmus H. Godiksen, Shaojun Wang, T. V. Raziman, Marcos H. D. Guimaraes, Jaime Gómez Rivas, Alberto G. Curto. Correlated Exciton Fluctuations in a Two-Dimensional Semiconductor on a Metal. Nano Letters 2020, 20 (7) , 4829-4836. https://doi.org/10.1021/acs.nanolett.0c00756
    23. Wenxu Yin, Xin Liu, Xiaoyu Zhang, Xupeng Gao, Vicki L. Colvin, Yu Zhang, William W. Yu. Synthesis of Tungsten Disulfide and Molybdenum Disulfide Quantum Dots and Their Applications. Chemistry of Materials 2020, 32 (11) , 4409-4424. https://doi.org/10.1021/acs.chemmater.0c01441
    24. Yi Yao, Fei Chen, Li Fu, Su Ding, Shichao Zhao, Qi Zhang, Weitao Su, Xin Ding, Kaixin Song. In Situ Probing the Localized Optoelectronic Properties of Defective Monolayer WS2. The Journal of Physical Chemistry C 2020, 124 (13) , 7591-7596. https://doi.org/10.1021/acs.jpcc.0c02042
    25. Jingwei Wang, Yi Luo, Xiangbin Cai, Run Shi, Weijun Wang, Tianran Li, Zefei Wu, Xian Zhang, Ouwen Peng, Abbas Amini, Chunmei Tang, Kai Liu, Ning Wang, Chun Cheng. Multiple Regulation over Growth Direction, Band Structure, and Dimension of Monolayer WS2 by a Quartz Substrate. Chemistry of Materials 2020, 32 (6) , 2508-2517. https://doi.org/10.1021/acs.chemmater.9b05124
    26. Kathleen M. McCreary, Enrique D. Cobas, Aubrey T. Hanbicki, Matthew R. Rosenberger, Hsun-Jen Chuang, Saujan V. Sivaram, Vladimir P. Oleshko, Berend T. Jonker. Synthesis of High-Quality Monolayer MoS2 by Direct Liquid Injection. ACS Applied Materials & Interfaces 2020, 12 (8) , 9580-9588. https://doi.org/10.1021/acsami.9b19561
    27. Fengping Li, Wei Wei, Baibiao Huang, Ying Dai. Excited-State Properties of Janus Transition-Metal Dichalcogenides. The Journal of Physical Chemistry C 2020, 124 (2) , 1667-1673. https://doi.org/10.1021/acs.jpcc.9b09097
    28. Jimmy C. Kotsakidis, Quianhui Zhang, Amadeo L. Vazquez de Parga, Marc Currie, Kristian Helmerson, D. Kurt Gaskill, Michael S. Fuhrer. Oxidation of Monolayer WS2 in Ambient Is a Photoinduced Process. Nano Letters 2019, 19 (8) , 5205-5215. https://doi.org/10.1021/acs.nanolett.9b01599
    29. Jiake Li, Weitao Su, Fei Chen, Li Fu, Su Ding, Kaixin Song, Xiwei Huang, Lijie Zhang. Atypical Defect-Mediated Photoluminescence and Resonance Raman Spectroscopy of Monolayer WS2. The Journal of Physical Chemistry C 2019, 123 (6) , 3900-3907. https://doi.org/10.1021/acs.jpcc.8b11647
    30. Wenxu Yin, Xue Bai, Ping Chen, Xiaoyu Zhang, Liang Su, Changyin Ji, Haoming Gao, Hongwei Song, William W. Yu. Rational Control of Size and Photoluminescence of WS2 Quantum Dots for White Light-Emitting Diodes. ACS Applied Materials & Interfaces 2018, 10 (50) , 43824-43830. https://doi.org/10.1021/acsami.8b17966
    31. Chanwoo Lee, Byeong Geun Jeong, Seok Joon Yun, Young Hee Lee, Seung Mi Lee, Mun Seok Jeong. Unveiling Defect-Related Raman Mode of Monolayer WS2 via Tip-Enhanced Resonance Raman Scattering. ACS Nano 2018, 12 (10) , 9982-9990. https://doi.org/10.1021/acsnano.8b04265
    32. Michael S. Eggleston, Sujay B. Desai, Kevin Messer, Seth A. Fortuna, Surabhi Madhvapathy, Jun Xiao, Xiang Zhang, Eli Yablonovitch, Ali Javey, Ming C. Wu. Ultrafast Spontaneous Emission from a Slot-Antenna Coupled WSe2 Monolayer. ACS Photonics 2018, 5 (7) , 2701-2705. https://doi.org/10.1021/acsphotonics.8b00381
    33. Yuchen Yue, JianCui Chen, Yu Zhang, ShuaiShuai Ding, Fulai Zhao, Yu Wang, Daihua Zhang, RongJin Li, Huanli Dong, Wenping Hu, Yiyu Feng, Wei Feng. Two-Dimensional High-Quality Monolayered Triangular WS2 Flakes for Field-Effect Transistors. ACS Applied Materials & Interfaces 2018, 10 (26) , 22435-22444. https://doi.org/10.1021/acsami.8b05885
    34. Evgeniy Ponomarev, Árpád Pásztor, Adrien Waelchli, Alessandro Scarfato, Nicolas Ubrig, Christoph Renner, Alberto F. Morpurgo. Hole Transport in Exfoliated Monolayer MoS2. ACS Nano 2018, 12 (3) , 2669-2676. https://doi.org/10.1021/acsnano.7b08831
    35. Hyun Goo Ji, Yung-Chang Lin, Kosuke Nagashio, Mina Maruyama, Pablo Solís-Fernández, Adha Sukma Aji, Vishal Panchal, Susumu Okada, Kazu Suenaga, and Hiroki Ago . Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching. Chemistry of Materials 2018, 30 (2) , 403-411. https://doi.org/10.1021/acs.chemmater.7b04149
    36. Sandhya Susarla, Vidya Kochat, Alex Kutana, Jordan A. Hachtel, Juan Carlos Idrobo, Robert Vajtai, Boris I. Yakobson, Chandra Sekhar Tiwary, and Pulickel M. Ajayan . Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials 2017, 29 (17) , 7431-7439. https://doi.org/10.1021/acs.chemmater.7b02407
    37. Kathleen M. McCreary, Marc Currie, Aubrey T. Hanbicki, Hsun-Jen Chuang, and Berend T. Jonker . Understanding Variations in Circularly Polarized Photoluminescence in Monolayer Transition Metal Dichalcogenides. ACS Nano 2017, 11 (8) , 7988-7994. https://doi.org/10.1021/acsnano.7b02554
    38. Kunttal Keyshar, Morgann Berg, Xiang Zhang, Robert Vajtai, Gautam Gupta, Calvin K. Chan, Thomas E. Beechem, Pulickel M. Ajayan, Aditya D. Mohite, and Taisuke Ohta . Experimental Determination of the Ionization Energies of MoSe2, WS2, and MoS2 on SiO2 Using Photoemission Electron Microscopy. ACS Nano 2017, 11 (8) , 8223-8230. https://doi.org/10.1021/acsnano.7b03242
    39. Xinpeng Fu, Fangfei Li, Jung-Fu Lin, Yuanbo Gong, Xiaoli Huang, Yanping Huang, Bo Han, Qiang Zhou, and Tian Cui . Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe2. The Journal of Physical Chemistry Letters 2017, 8 (15) , 3556-3563. https://doi.org/10.1021/acs.jpclett.7b01374
    40. Mohammad H. Tahersima, M. Danang Birowosuto, Zhizhen Ma, William C. Coley, Michael D. Valentin, Sahar Naghibi Alvillar, I-Hsi Lu, Yao Zhou, Ibrahim Sarpkaya, Aimee Martinez, Ingrid Liao, Brandon N. Davis, Joseph Martinez, Dominic Martinez-Ta, Alison Guan, Ariana E. Nguyen, Ke Liu, Cesare Soci, Evan Reed, Ludwig Bartels, and Volker J. Sorger . Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae. ACS Photonics 2017, 4 (7) , 1713-1721. https://doi.org/10.1021/acsphotonics.7b00208
    41. Fei Cheng, Alex D. Johnson, Yutsung Tsai, Ping-Hsiang Su, Shen Hu, John G. Ekerdt, and Chih-Kang Shih . Enhanced Photoluminescence of Monolayer WS2 on Ag Films and Nanowire–WS2–Film Composites. ACS Photonics 2017, 4 (6) , 1421-1430. https://doi.org/10.1021/acsphotonics.7b00152
    42. Yuewen Sheng, Xiaochen Wang, Kazunori Fujisawa, Siqi Ying, Ana Laura Elias, Zhong Lin, Wenshuo Xu, Yingqiu Zhou, Alexander M. Korsunsky, Harish Bhaskaran, Mauricio Terrones, and Jamie H. Warner . Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2017, 9 (17) , 15005-15014. https://doi.org/10.1021/acsami.6b16287
    43. Franziska Baumer, Yuqiang Ma, Chenfei Shen, Anyi Zhang, Liang Chen, Yihang Liu, Daniela Pfister, Tom Nilges, and Chongwu Zhou . Synthesis, Characterization, and Device Application of Antimony-Substituted Violet Phosphorus: A Layered Material. ACS Nano 2017, 11 (4) , 4105-4113. https://doi.org/10.1021/acsnano.7b00798
    44. Gopinath Danda, Paul Masih Das, Yung-Chien Chou, Jerome T. Mlack, William M. Parkin, Carl H. Naylor, Kazunori Fujisawa, Tianyi Zhang, Laura Beth Fulton, Mauricio Terrones, Alan T. Charlie Johnson, and Marija Drndić . Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano 2017, 11 (2) , 1937-1945. https://doi.org/10.1021/acsnano.6b08028
    45. Jie Li, Chenli Hu, Hao Wu, Zhixuan Liu, Shuai Cheng, Wenfeng Zhang, Haibo Shu, and Haixin Chang . Facile Preparation of Single MoS2 Atomic Crystals with Highly Tunable Photoluminescence by Morphology and Atomic Structure. Crystal Growth & Design 2016, 16 (12) , 7094-7101. https://doi.org/10.1021/acs.cgd.6b01330
    46. Henan Li, Peng Li, Jing-Kai Huang, Ming-Yang Li, Chih-Wen Yang, Yumeng Shi, Xi-Xiang Zhang, and Lain-Jong Li . Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. ACS Nano 2016, 10 (11) , 10516-10523. https://doi.org/10.1021/acsnano.6b06496
    47. Heather M. Hill, Albert F. Rigosi, Kwang Taeg Rim, George W. Flynn, and Tony F. Heinz . Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Letters 2016, 16 (8) , 4831-4837. https://doi.org/10.1021/acs.nanolett.6b01007
    48. Kai Wang, Bing Huang, Mengkun Tian, Frank Ceballos, Ming-Wei Lin, Masoud Mahjouri-Samani, Abdelaziz Boulesbaa, Alexander A. Puretzky, Christopher M. Rouleau, Mina Yoon, Hui Zhao, Kai Xiao, Gerd Duscher, and David B. Geohegan . Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano 2016, 10 (7) , 6612-6622. https://doi.org/10.1021/acsnano.6b01486
    49. Zhengyu He, Xiaochen Wang, Wenshuo Xu, Yingqiu Zhou, Yuewen Sheng, Youmin Rong, Jason M. Smith, and Jamie H. Warner . Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing. ACS Nano 2016, 10 (6) , 5847-5855. https://doi.org/10.1021/acsnano.6b00714
    50. Zhuan Zhu, Jiangtan Yuan, Haiqing Zhou, Jonathan Hu, Jing Zhang, Chengli Wei, Fang Yu, Shuo Chen, Yucheng Lan, Yao Yang, Yanan Wang, Chao Niu, Zhifeng Ren, Jun Lou, Zhiming Wang, and Jiming Bao . Excitonic Resonant Emission–Absorption of Surface Plasmons in Transition Metal Dichalcogenides for Chip-Level Electronic–Photonic Integrated Circuits. ACS Photonics 2016, 3 (5) , 869-874. https://doi.org/10.1021/acsphotonics.6b00101
    51. Ananth Govind Rajan, Jamie H. Warner, Daniel Blankschtein, and Michael S. Strano . Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10 (4) , 4330-4344. https://doi.org/10.1021/acsnano.5b07916
    52. Christopher R. Ryder, Joshua D. Wood, Spencer A. Wells, and Mark C. Hersam . Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS Nano 2016, 10 (4) , 3900-3917. https://doi.org/10.1021/acsnano.6b01091
    53. Zhengyu He, Wenshuo Xu, Yingqiu Zhou, Xiaochen Wang, Yuewen Sheng, Youmin Rong, Shaoqiang Guo, Junying Zhang, Jason M. Smith, and Jamie H. Warner . Biexciton Formation in Bilayer Tungsten Disulfide. ACS Nano 2016, 10 (2) , 2176-2183. https://doi.org/10.1021/acsnano.5b06678
    54. Min Su Kim, Seok Joon Yun, Yongjun Lee, Changwon Seo, Gang Hee Han, Ki Kang Kim, Young Hee Lee, and Jeongyong Kim . Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers. ACS Nano 2016, 10 (2) , 2399-2405. https://doi.org/10.1021/acsnano.5b07214
    55. Youmin Rong, Yuewen Sheng, Mercè Pacios, Xiaochen Wang, Zhengyu He, Harish Bhaskaran, and Jamie H. Warner . Electroluminescence Dynamics across Grain Boundary Regions of Monolayer Tungsten Disulfide. ACS Nano 2016, 10 (1) , 1093-1100. https://doi.org/10.1021/acsnano.5b06408
    56. Hau-Vei Han, Ang-Yu Lu, Li-Syuan Lu, Jing-Kai Huang, Henan Li, Chang-Lung Hsu, Yung-Chang Lin, Ming-Hui Chiu, Kazu Suenaga, Chih-Wei Chu, Hao-Chung Kuo, Wen-Hao Chang, Lain-Jong Li, and Yumeng Shi . Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. ACS Nano 2016, 10 (1) , 1454-1461. https://doi.org/10.1021/acsnano.5b06960
    57. Ganesh R. Bhimanapati, Zhong Lin, Vincent Meunier, Yeonwoong Jung, Judy Cha, Saptarshi Das, Di Xiao, Youngwoo Son, Michael S. Strano, Valentino R. Cooper, Liangbo Liang, Steven G. Louie, Emilie Ringe, Wu Zhou, Steve S. Kim, Rajesh R. Naik, Bobby G. Sumpter, Humberto Terrones, Fengnian Xia, Yeliang Wang, Jun Zhu, Deji Akinwande, Nasim Alem, Jon A. Schuller, Raymond E. Schaak, Mauricio Terrones, and Joshua A. Robinson . Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9 (12) , 11509-11539. https://doi.org/10.1021/acsnano.5b05556
    58. Yongji Gong, Zhong Lin, Gonglan Ye, Gang Shi, Simin Feng, Yu Lei, Ana Laura Elías, Nestor Perea-Lopez, Robert Vajtai, Humberto Terrones, Zheng Liu, Mauricio Terrones, and Pulickel M. Ajayan . Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. ACS Nano 2015, 9 (12) , 11658-11666. https://doi.org/10.1021/acsnano.5b05594
    59. Tamie A.J. Loh and Daniel H.C. Chua . Origin of Hybrid 1T- and 2H-WS2 Ultrathin Layers by Pulsed Laser Deposition. The Journal of Physical Chemistry C 2015, 119 (49) , 27496-27504. https://doi.org/10.1021/acs.jpcc.5b09277
    60. Nihar R. Pradhan, Amber McCreary, Daniel Rhodes, Zhengguang Lu, Simin Feng, Efstratios Manousakis, Dmitry Smirnov, Raju Namburu, Madan Dubey, Angela R. Hight Walker, Humberto Terrones, Mauricio Terrones, Vladimir Dobrosavljevic, and Luis Balicas . Metal to Insulator Quantum-Phase Transition in Few-Layered ReS2. Nano Letters 2015, 15 (12) , 8377-8384. https://doi.org/10.1021/acs.nanolett.5b04100
    61. Reshma Bhosale, Sarika Kelkar, Golu Parte, Rohan Fernandes, Dushyant Kothari, and Satishchandra Ogale . NiS1.97: A New Efficient Water Oxidation Catalyst for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Interfaces 2015, 7 (36) , 20053-20060. https://doi.org/10.1021/acsami.5b05077
    62. Bilu Liu, Mohammad Fathi, Liang Chen, Ahmad Abbas, Yuqiang Ma, and Chongwu Zhou . Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano 2015, 9 (6) , 6119-6127. https://doi.org/10.1021/acsnano.5b01301
    63. Zai-Quan Xu, Yupeng Zhang, Shenghuang Lin, Changxi Zheng, Yu Lin Zhong, Xue Xia, Zhipeng Li, Ponraj Joice Sophia, Michael S. Fuhrer, Yi-Bing Cheng, and Qiaoliang Bao . Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano 2015, 9 (6) , 6178-6187. https://doi.org/10.1021/acsnano.5b01480
    64. Matthew Z. Bellus, Frank Ceballos, Hsin-Ying Chiu, and Hui Zhao . Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures. ACS Nano 2015, 9 (6) , 6459-6464. https://doi.org/10.1021/acsnano.5b02144
    65. Seok Joon Yun, Sang Hoon Chae, Hyun Kim, Jin Cheol Park, Ji-Hoon Park, Gang Hee Han, Joo Song Lee, Soo Min Kim, Hye Min Oh, Jinbong Seok, Mun Seok Jeong, Ki Kang Kim, and Young Hee Lee . Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano 2015, 9 (5) , 5510-5519. https://doi.org/10.1021/acsnano.5b01529
    66. Maurizia Palummo, Marco Bernardi, and Jeffrey C. Grossman . Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides. Nano Letters 2015, 15 (5) , 2794-2800. https://doi.org/10.1021/nl503799t
    67. Youmin Rong, Kuang He, Mercè Pacios, Alex W. Robertson, Harish Bhaskaran, and Jamie H. Warner . Controlled Preferential Oxidation of Grain Boundaries in Monolayer Tungsten Disulfide for Direct Optical Imaging. ACS Nano 2015, 9 (4) , 3695-3703. https://doi.org/10.1021/acsnano.5b00852
    68. Anand P. S. Gaur, Satyaprakash Sahoo, J. F. Scott, and Ram S. Katiyar . Electron–Phonon Interaction and Double-Resonance Raman Studies in Monolayer WS2. The Journal of Physical Chemistry C 2015, 119 (9) , 5146-5151. https://doi.org/10.1021/jp512540u
    69. Jingzhi Shang, Xiaonan Shen, Chunxiao Cong, Namphung Peimyoo, Bingchen Cao, Mustafa Eginligil, and Ting Yu . Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano 2015, 9 (1) , 647-655. https://doi.org/10.1021/nn5059908
    70. Namphung Peimyoo, Weihuang Yang, Jingzhi Shang, Xiaonan Shen, Yanlong Wang, and Ting Yu . Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Monolayer WS2. ACS Nano 2014, 8 (11) , 11320-11329. https://doi.org/10.1021/nn504196n
    71. Benoit Mahler, Veronika Hoepfner, Kristine Liao, and Geoffrey A. Ozin . Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2014, 136 (40) , 14121-14127. https://doi.org/10.1021/ja506261t
    72. Xingli Wang, Yongji Gong, Gang Shi, Wai Leong Chow, Kunttal Keyshar, Gonglan Ye, Robert Vajtai, Jun Lou, Zheng Liu, Emilie Ringe, Beng Kang Tay, and Pulickel M. Ajayan . Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 2014, 8 (5) , 5125-5131. https://doi.org/10.1021/nn501175k
    73. A. Fernández García, R. Ariza, J. Solis, F. Agulló-Rueda, M. Manso Silvan, M. Garcia-Lechuga. Out-of-plane preferential growth of 2D molybdenum diselenide nanosheets on laser-induced periodic surface structures. Applied Surface Science 2024, 669 , 160567. https://doi.org/10.1016/j.apsusc.2024.160567
    74. Arvind Kaushik, Prashant Bisht, Sneha Senapati, Jitendra Pratap Singh. Ag nanoparticle functionalized vertical WS2 nanoflakes as SERS substrate for chemical sensing. Surfaces and Interfaces 2024, 52 , 104951. https://doi.org/10.1016/j.surfin.2024.104951
    75. Kavita Yadav, Kavitha Kumari, Yashpal Sharma, Jitendra Gangwar. Hydrothermal Synthesis of Metal Sulfides (MS2; M = Mo and W) Nanostructures with their Structural and Optical Properties. Oriental Journal Of Chemistry 2024, 40 (4) , 1138-1144. https://doi.org/10.13005/ojc/400428
    76. R. Reho, A. R. Botello-Méndez, D. Sangalli, M. J. Verstraete, Zeila Zanolli. Excitonic response in transition metal dichalcogenide heterostructures from first principles: Impact of stacking, twisting, and interlayer distance. Physical Review B 2024, 110 (3) https://doi.org/10.1103/PhysRevB.110.035118
    77. Duy Khanh Nguyen, R. Ponce-Pérez, J. Guerrero-Sanchez, D. M. Hoat. Vacancy-and doping-mediated electronic and magnetic properties of PtSSe monolayer towards optoelectronic and spintronic applications. RSC Advances 2024, 14 (27) , 19067-19075. https://doi.org/10.1039/D4RA02071E
    78. I. A. Milekhin, N. N. Kurus, L. S. Basalaeva, A. G. Milekhin, E. O. Chiglincev, A. I. Chernov, A. V. Latyshev. Near-Field Photoluminescence of WS2 and MoS2 Monolayers, Grown by Chemical Vapor Deposition. SIBERIAN JOURNAL OF PHYSICS 2024, 18 (4) , 94-103. https://doi.org/10.25205/2541-9447-2023-18-4-94-103
    79. Kaan Kececi, Ali Dinler. Review—Recent Applications of Resistive-pulse Sensing Using 2D Nanopores. Journal of The Electrochemical Society 2024, 171 (3) , 037505. https://doi.org/10.1149/1945-7111/ad2d18
    80. Changhui Du, Honglei Gao, Yurun Sun, Meixuan Liu, Jianfei Li, Jie Sun, Jiancai Leng, Wenjia Wang, Kuilong Li. High-performance self-driven ultraviolet-visible photodetector based on type-II WS2/ReSe2 van der Waals heterostructure. Journal of Alloys and Compounds 2024, 976 , 173122. https://doi.org/10.1016/j.jallcom.2023.173122
    81. Fatma Yıldırım, Emin Bacaksız, Abdulmecit Türüt, Şakir Aydoğan. Self-driven, stable broadband photodetector based on GaAs:CdS heterojunction with ultrahigh on/off ratio and detectivity. Surfaces and Interfaces 2024, 44 , 103709. https://doi.org/10.1016/j.surfin.2023.103709
    82. Shulei Li, Fu Deng, Lidan Zhou, Zhenxu Lin, Mingcheng Panmai, Shimei Liu, Yuheng Mao, Jinshan Luo, Jin Xiang, Jun Dai, Yunbao Zheng, Sheng Lan. Revealing defect-bound excitons in WS 2 monolayer at room temperature by exploiting the transverse electric polarized wave supported by a Si 3 N 4 /Ag heterostructure. Nanophotonics 2023, 12 (24) , 4485-4494. https://doi.org/10.1515/nanoph-2023-0560
    83. Weihuang Yang, Yuanbin Mu, Xiangshuo Chen, Ningjing Jin, Jiahao Song, Jiajun Chen, Linxi Dong, Chaoran Liu, Weipeng Xuan, Changjie Zhou, Chunxiao Cong, Jingzhi Shang, Silin He, Gaofeng Wang, Jing Li. CVD growth of large-area monolayer WS2 film on sapphire through tuning substrate environment and its application for high-sensitive strain sensor. Discover Nano 2023, 18 (1) https://doi.org/10.1186/s11671-023-03782-z
    84. Santosh Neupane, Hong Tang, Adrienn Ruzsinszky. Defect-induced states, defect-induced phase transition, and excitonic states in bent tungsten disulfide ( WS 2 ) nanoribbons: Density functional vs. many body theory. Physical Review Materials 2023, 7 (12) https://doi.org/10.1103/PhysRevMaterials.7.124001
    85. Addis S. Fuhr, Bobby G. Sumpter, Panchapakesan Ganesh. Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability. Frontiers in Nanotechnology 2023, 5 https://doi.org/10.3389/fnano.2023.1291338
    86. Shuang Qiao, Jihong Liu, Ruining Wang, Linjuan Guo, Shufang Wang, Anlian Pan, Caofeng Pan. Dual Mechanism WS 2 ‐WSe 2 Lateral Monolayer Heterojunction Photodetector and Its Photoresponse Enhancement by Hybridizing with CsPbBr 3 QDs. Advanced Optical Materials 2023, 11 (21) https://doi.org/10.1002/adom.202300751
    87. Dongao Xie, Changxin Tang, Dan Li, Jiren Yuan, Feigao Xu. FeOCl/WS2 composite as a heterogeneous Fenton catalyst to efficiently degrade acid orange II. Inorganic Chemistry Communications 2023, 156 , 111085. https://doi.org/10.1016/j.inoche.2023.111085
    88. Xiaoyu Wei, Zijun Tang, Chenxu Liu, Huili Zhu, Changjie Zhou. Large-area WS2 Deposited on Sapphire and Its In-Plane Raman and PL Spectral Distributions. Journal of Physics: Conference Series 2023, 2553 (1) , 012053. https://doi.org/10.1088/1742-6596/2553/1/012053
    89. Qinke Wu, Huiyu Nong, Rongxu Zheng, Rongjie Zhang, Jingwei Wang, Liusi Yang, Bilu Liu. Resolidified Chalcogen Precursors for High‐Quality 2D Semiconductor Growth. Angewandte Chemie 2023, 135 (29) https://doi.org/10.1002/ange.202301501
    90. Qinke Wu, Huiyu Nong, Rongxu Zheng, Rongjie Zhang, Jingwei Wang, Liusi Yang, Bilu Liu. Resolidified Chalcogen Precursors for High‐Quality 2D Semiconductor Growth. Angewandte Chemie International Edition 2023, 62 (29) https://doi.org/10.1002/anie.202301501
    91. Eminegül Genc Acar, Seda Yılmaz, Zafer Eroglu, Emre Aslan, Önder Metin, Imren Hatay Patır. Solar-light-driven photocatalytic hydrogen evolution activity of gCN/WS2 heterojunctions incorporated with the first-row transition metals. Journal of Alloys and Compounds 2023, 950 , 169753. https://doi.org/10.1016/j.jallcom.2023.169753
    92. Chen Ji, Yung-Huang Chang, Chien-Sheng Huang, Bohr-Ran Huang, Yuan-Tsung Chen. Controllable Doping Characteristics for WSxSey Monolayers Based on the Tunable S/Se Ratio. Nanomaterials 2023, 13 (14) , 2107. https://doi.org/10.3390/nano13142107
    93. Anna Y. Krivonogova, Nina N. Kurus, Ilya A. Milekhin, Alexander G. Milekhin, Anton A. Kolosvetov. Optical Properties of Two-Dimensional Islands of Tungsten Disulfide (WS2). 2023, 190-193. https://doi.org/10.1109/EDM58354.2023.10225062
    94. Eminegül Genc Acar, Seda Yılmaz, Zafer Eroglu, İlknur Aksoy Çekceoğlu, Emre Aslan, İmren Hatay Patır, Onder Metin. Black Phosphorus/WS2-TM (TM: Ni, Co) Heterojunctions for Photocatalytic Hydrogen Evolution under Visible Light Illumination. Catalysts 2023, 13 (6) , 1006. https://doi.org/10.3390/catal13061006
    95. Shizhe Feng, Wenxiang Wang, Shijun Wang, Xuwei Cui, Yifan Yang, Fan Xu, Luqi Liu, Zhiping Xu. Controlling and visualizing fracture of 2D crystals by wrinkling. Journal of the Mechanics and Physics of Solids 2023, 174 , 105253. https://doi.org/10.1016/j.jmps.2023.105253
    96. Weidong Chen, Yu Zhang, Zhicong Lai, Ziqi Lin, Wang Zhang, Zhibin Li, Huadan Zheng, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jianhui Yu, Zhe Chen. Interdigitated electrodes enhanced photosensitive monolayer WS2 field effect transistor on glass substrate. Optics Communications 2023, 534 , 129323. https://doi.org/10.1016/j.optcom.2023.129323
    97. F. D. V. Araujo, F. W. N. Silva, T. Zhang, C. Zhou, Zhong Lin, Nestor Perea-Lopez, Samuel F. Rodrigues, Mauricio Terrones, Antônio Gomes Souza Filho, R. S. Alencar, Bartolomeu C. Viana. Substrate-Induced Changes on the Optical Properties of Single-Layer WS2. Materials 2023, 16 (7) , 2591. https://doi.org/10.3390/ma16072591
    98. R. Santosh, U. Nageswara Rao, M. Jagan Mohan Rao, Suresh Kumar Yattirajula, V. Kumar. The Anisotropy and Birefringence of Monolayer WS2 Semiconductor. 2023, 249-255. https://doi.org/10.1007/978-981-19-2308-1_26
    99. Q. Zhang, C. Zheng, K. Sagoe-Crentsil, W. Duan. Transfer and Substrate Effects on 2D Materials for Their Sensing and Energy Applications in Civil Engineering. 2023, 409-419. https://doi.org/10.1007/978-981-99-3330-3_42
    100. Abdul Majid, Alia Jabeen. Transition Metal Dichalcogenides—An Important Class of Layered Materials. 2023, 103-140. https://doi.org/10.1007/978-981-99-6299-0_5
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2013, 7, 12, 10985–10994
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn4046002
    Published November 22, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    8165

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.