Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
A Neutral Loss Activation Method for Improved Phosphopeptide Sequence Analysis by Quadrupole Ion Trap Mass Spectrometry
My Activity
CONTENT TYPES
    Article

    A Neutral Loss Activation Method for Improved Phosphopeptide Sequence Analysis by Quadrupole Ion Trap Mass Spectrometry
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22901, Department of Pathology, University of Virginia, Charlottesville, Virginia 22901, and Thermo Electron Corporation, 355 River Oaks Parkway, San Jose, California
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 13, 3590–3598
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac0497104
    Published May 18, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Recent advances in phosphopeptide enrichment prior to mass spectrometric analysis show genuine promise for characterization of phosphoproteomes. Tandem mass spectrometry of phosphopeptide ions, using collision-activated dissociation (CAD), often produces product ions dominated by the neutral loss of phosphoric acid. Here we describe a novel method, termed Pseudo MSn, for phosphopeptide ion dissociation in quadrupole ion trap mass spectrometers. The method induces collisional activation of product ions, those resulting from neutral loss(es) of phosphoric acid, following activation of the precursor ion. Thus, the principal neutral loss product ions are converted into a variety of structurally informative species. Since product ions from both the original precursor activation and all subsequent neutral loss product activations are simulataneously stored, the method generates a “composite” spectrum containing fragments derived from multiple precursors. In comparison to analysis by conventional MS/MS (CAD), Pseudo MSn shows improved phosphopeptide ion dissociation for 7 out of 10 synthetic phosphopeptides, as judged by an automated search algorithm (TurboSEQUEST). A similar overall improvement was observed upon application of Pseudo MSn to peptides generated by enzymatic digestion of a single phosphoprotein. Finally, when applied to a complex phosphopeptide mixture, several phosphopeptides misassigned by TurboSEQUEST under the conventional CAD approach were successfully identified after analysis by Pseudo MSn.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry, University of Virginia.

    §

     ThermoElectron Corporation.

     Department of Pathology, University of Virginia.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 330 publications.

    1. Yuming Jiang, Devasahayam Arokia Balaya Rex, Dina Schuster, Benjamin A. Neely, Germán L. Rosano, Norbert Volkmar, Amanda Momenzadeh, Trenton M. Peters-Clarke, Susan B. Egbert, Simion Kreimer, Emma H. Doud, Oliver M. Crook, Amit Kumar Yadav, Muralidharan Vanuopadath, Adrian D. Hegeman, Martín L. Mayta, Anna G. Duboff, Nicholas M. Riley, Robert L. Moritz, Jesse G. Meyer. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS Measurement Science Au 2024, 4 (4) , 338-417. https://doi.org/10.1021/acsmeasuresciau.3c00068
    2. Haijiao Zheng, Jiaxin Jia, Zheng Li, Qiong Jia. Bifunctional Magnetic Supramolecular-Organic Framework: A Nanoprobe for Simultaneous Enrichment of Glycosylated and Phosphorylated Peptides. Analytical Chemistry 2020, 92 (3) , 2680-2689. https://doi.org/10.1021/acs.analchem.9b04691
    3. Devin K. Schweppe, Scott F. Rusin, Steven P. Gygi, Joao A. Paulo. Optimized Workflow for Multiplexed Phosphorylation Analysis of TMT-Labeled Peptides Using High-Field Asymmetric Waveform Ion Mobility Spectrometry. Journal of Proteome Research 2020, 19 (1) , 554-560. https://doi.org/10.1021/acs.jproteome.9b00759
    4. Yusi Cui, Ka Yang, Dylan Nicholas Tabang, Junfeng Huang, Weiping Tang, Lingjun Li. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides. Journal of the American Society for Mass Spectrometry 2019, 30 (12) , 2491-2501. https://doi.org/10.1007/s13361-019-02230-6
    5. Clement M. Potel, Simone Lemeer, Albert J. R. Heck. Phosphopeptide Fragmentation and Site Localization by Mass Spectrometry: An Update. Analytical Chemistry 2019, 91 (1) , 126-141. https://doi.org/10.1021/acs.analchem.8b04746
    6. Dalton T. Snyder, Lucas J. Szalwinski, Robert L. Schrader, Valentina Pirro, Ryan Hilger, R. Graham Cooks. Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap. Journal of the American Society for Mass Spectrometry 2018, 29 (7) , 1345-1354. https://doi.org/10.1007/s13361-018-1920-3
    7. Matthew J. Berberich, Joao A. Paulo, Robert A. Everley. MS3-IDQ: Utilizing MS3 Spectra beyond Quantification Yields Increased Coverage of the Phosphoproteome in Isobaric Tag Experiments. Journal of Proteome Research 2018, 17 (4) , 1741-1747. https://doi.org/10.1021/acs.jproteome.8b00006
    8. Alireza Dehghani, Markus Gödderz, and Dominic Winter . Tip-Based Fractionation of Batch-Enriched Phosphopeptides Facilitates Easy and Robust Phosphoproteome Analysis. Journal of Proteome Research 2018, 17 (1) , 46-54. https://doi.org/10.1021/acs.jproteome.7b00256
    9. Xiaoyue Jiang, Ryan Bomgarden, Joseph Brown, Devin L. Drew, Aaron M. Robitaille, Rosa Viner, and Andreas R. Huhmer . Sensitive and Accurate Quantitation of Phosphopeptides Using TMT Isobaric Labeling Technique. Journal of Proteome Research 2017, 16 (11) , 4244-4252. https://doi.org/10.1021/acs.jproteome.7b00610
    10. Dalton T. Snyder, Lucas J. Szalwinski, and R. Graham Cooks . Simultaneous and Sequential MS/MS Scan Combinations and Permutations in a Linear Quadrupole Ion Trap. Analytical Chemistry 2017, 89 (20) , 11053-11060. https://doi.org/10.1021/acs.analchem.7b03064
    11. Dalton T. Snyder, R. Graham Cooks. Single Analyzer Precursor Ion Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation. Journal of the American Society for Mass Spectrometry 2017, 28 (9) , 1929-1938. https://doi.org/10.1007/s13361-017-1707-y
    12. Dalton T. Snyder and R. Graham Cooks . Single Analyzer Neutral Loss Scans in a Linear Quadrupole Ion Trap Using Orthogonal Double Resonance Excitation. Analytical Chemistry 2017, 89 (15) , 8148-8155. https://doi.org/10.1021/acs.analchem.7b01963
    13. Nicholas M. Riley, Alexander S. Hebert, Gerhard Dürnberger, Florian Stanek, Karl Mechtler, Michael S. Westphall, and Joshua J. Coon . Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Analytical Chemistry 2017, 89 (12) , 6367-6376. https://doi.org/10.1021/acs.analchem.7b00212
    14. Robert A. Everley, Edward L. Huttlin, Alison R. Erickson, Sean A. Beausoleil, and Steven P. Gygi . Neutral Loss Is a Very Common Occurrence in Phosphotyrosine-Containing Peptides Labeled with Isobaric Tags. Journal of Proteome Research 2017, 16 (2) , 1069-1076. https://doi.org/10.1021/acs.jproteome.6b00487
    15. W. Ryan Parker, Dustin D. Holden, Victoria C. Cotham, Hua Xu, and Jennifer S. Brodbelt . Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S–Se Bond Cleavage with 266 nm Ultraviolet Photodissociation. Analytical Chemistry 2016, 88 (14) , 7222-7229. https://doi.org/10.1021/acs.analchem.6b01465
    16. Simon Svane, Thomas J. D. Jørgensen, Christine J. McKenzie, and Frank Kjeldsen . Effect of Metals in Biomimetic Dimetal Complexes on Affinity and Gas-Phase Protection of Phosphate Esters. Analytical Chemistry 2015, 87 (14) , 7060-7068. https://doi.org/10.1021/acs.analchem.5b00257
    17. Veronika Suni, Susumu Y. Imanishi, Alessio Maiolica, Ruedi Aebersold, and Garry L. Corthals . Confident Site Localization Using a Simulated Phosphopeptide Spectral Library. Journal of Proteome Research 2015, 14 (5) , 2348-2359. https://doi.org/10.1021/acs.jproteome.5b00050
    18. Reinaldo Almeida, Zane Berzina, Eva C. Arnspang, Jan Baumgart, Johannes Vogt, Robert Nitsch, and Christer S. Ejsing . Quantitative Spatial Analysis of the Mouse Brain Lipidome by Pressurized Liquid Extraction Surface Analysis. Analytical Chemistry 2015, 87 (3) , 1749-1756. https://doi.org/10.1021/ac503627z
    19. Rob C. Oslund, Jung-Min Kee, Anthony D. Couvillon, Vivek N. Bhatia, David H. Perlman, and Tom W. Muir . A Phosphohistidine Proteomics Strategy Based on Elucidation of a Unique Gas-Phase Phosphopeptide Fragmentation Mechanism. Journal of the American Chemical Society 2014, 136 (37) , 12899-12911. https://doi.org/10.1021/ja507614f
    20. Gregory C. Donohoe, Hossein Maleki, James R. Arndt, Mahdiar Khakinejad, Jinghai Yi, Carroll McBride, Timothy R. Nurkiewicz, and Stephen J. Valentine . A New Ion Mobility–Linear Ion Trap Instrument for Complex Mixture Analysis. Analytical Chemistry 2014, 86 (16) , 8121-8128. https://doi.org/10.1021/ac501527y
    21. XuNa Wu, Kamil Sklodowski, Bea Encke, and Waltraud X. Schulze . A Kinase-Phosphatase Signaling Module with BSK8 and BSL2 Involved in Regulation of Sucrose-Phosphate Synthase. Journal of Proteome Research 2014, 13 (7) , 3397-3409. https://doi.org/10.1021/pr5003164
    22. Heike Wiese, Katja Kuhlmann, Sebastian Wiese, Nadine S. Stoepel, Magdalena Pawlas, Helmut E. Meyer, Christian Stephan, Martin Eisenacher, Friedel Drepper, and Bettina Warscheid . Comparison of Alternative MS/MS and Bioinformatics Approaches for Confident Phosphorylation Site Localization. Journal of Proteome Research 2014, 13 (2) , 1128-1137. https://doi.org/10.1021/pr400402s
    23. Li Cui, Ipek Yapici, Babak Borhan, Gavin E. Reid. Quantification of Competing H3PO4 Versus HPO3 + H2O Neutral Losses from Regioselective 18O-Labeled Phosphopeptides. Journal of the American Society for Mass Spectrometry 2014, 25 (1) , 141-148. https://doi.org/10.1007/s13361-013-0744-4
    24. Isao Fukuda, Yoshino Hirabayashi-Ishioka, Ikue Sakikawa, Takeshi Ota, Mari Yokoyama, Takaoki Uchiumi, and Atsushi Morita . Optimization of Enrichment Conditions on TiO2 Chromatography Using Glycerol As an Additive Reagent for Effective Phosphoproteomic Analysis. Journal of Proteome Research 2013, 12 (12) , 5587-5597. https://doi.org/10.1021/pr400546u
    25. Mostafa Zarei, Adrian Sprenger, Christine Gretzmeier, and Joern Dengjel . Rapid Combinatorial ERLIC–SCX Solid-Phase Extraction for In-Depth Phosphoproteome Analysis. Journal of Proteome Research 2013, 12 (12) , 5989-5995. https://doi.org/10.1021/pr4007969
    26. Steffen Bak, Ileana R. León, Ole Nørregaard Jensen, and Kurt Højlund . Tissue Specific Phosphorylation of Mitochondrial Proteins Isolated from Rat Liver, Heart Muscle, and Skeletal Muscle. Journal of Proteome Research 2013, 12 (10) , 4327-4339. https://doi.org/10.1021/pr400281r
    27. Sibylle Gündisch, Kathrin Grundner-Culemann, Claudia Wolff, Christina Schott, Bilge Reischauer, Manuela Machatti, Daniel Groelz, Christoph Schaab, Andreas Tebbe, and Karl-Friedrich Becker . Delayed Times to Tissue Fixation Result in Unpredictable Global Phosphoproteome Changes. Journal of Proteome Research 2013, 12 (10) , 4424-4434. https://doi.org/10.1021/pr400451z
    28. Veit Schwämmle, Ileana Rodríguez León, and Ole Nørregaard Jensen . Assessment and Improvement of Statistical Tools for Comparative Proteomics Analysis of Sparse Data Sets with Few Experimental Replicates. Journal of Proteome Research 2013, 12 (9) , 3874-3883. https://doi.org/10.1021/pr400045u
    29. Chunli Wang, Mingliang Ye, Yangyang Bian, Fangjie Liu, Kai Cheng, Mingming Dong, Jing Dong, and Hanfa Zou . Determination of CK2 Specificity and Substrates by Proteome-Derived Peptide Libraries. Journal of Proteome Research 2013, 12 (8) , 3813-3821. https://doi.org/10.1021/pr4002965
    30. Thiago Verano-Braga, Alexandre A. A. Dutra, Ileana R. León, Marcella N. Melo-Braga, Peter Roepstorff, Adriano M. C. Pimenta, and Frank Kjeldsen . Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from Tityus serrulatus. Journal of Proteome Research 2013, 12 (7) , 3460-3470. https://doi.org/10.1021/pr4003068
    31. Dennis Linke, Chien-Wen Hung, Liam Cassidy, and Andreas Tholey . Optimized Fragmentation Conditions for iTRAQ-labeled Phosphopeptides. Journal of Proteome Research 2013, 12 (6) , 2755-2763. https://doi.org/10.1021/pr400113n
    32. Michael D. Urbaniak, David M. A. Martin, and Michael A. J. Ferguson . Global Quantitative SILAC Phosphoproteomics Reveals Differential Phosphorylation Is Widespread between the Procyclic and Bloodstream Form Lifecycle Stages of Trypanosoma brucei. Journal of Proteome Research 2013, 12 (5) , 2233-2244. https://doi.org/10.1021/pr400086y
    33. Yaoyang Zhang, Bryan R. Fonslow, Bing Shan, Moon-Chang Baek, and John R. Yates, III . Protein Analysis by Shotgun/Bottom-up Proteomics. Chemical Reviews 2013, 113 (4) , 2343-2394. https://doi.org/10.1021/cr3003533
    34. Christian K. Frese, Houjiang Zhou, Thomas Taus, A. F. Maarten Altelaar, Karl Mechtler, Albert J. R. Heck, and Shabaz Mohammed . Unambiguous Phosphosite Localization using Electron-Transfer/Higher-Energy Collision Dissociation (EThcD). Journal of Proteome Research 2013, 12 (3) , 1520-1525. https://doi.org/10.1021/pr301130k
    35. Melanie Schulz, Stefanie Brandner, Carola Eberhagen, Friederike Eckardt-Schupp, Martin R. Larsen, and Ulrich Andrae . Quantitative Phosphoproteomic Analysis of Early Alterations in Protein Phosphorylation by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Journal of Proteome Research 2013, 12 (2) , 866-882. https://doi.org/10.1021/pr3009429
    36. Thomas A. Hansen, Marc Sylvester, Ole N. Jensen, and Frank Kjeldsen . Automated and High Confidence Protein Phosphorylation Site Localization Using Complementary Collision-Activated Dissociation and Electron Transfer Dissociation Tandem Mass Spectrometry. Analytical Chemistry 2012, 84 (22) , 9694-9699. https://doi.org/10.1021/ac302364r
    37. Janusz J. Petkowski, Christine E. Schaner Tooley, Lissa C. Anderson, Igor A. Shumilin, Jeremy L. Balsbaugh, Jeffrey Shabanowitz, Donald F. Hunt, Wladek Minor, and Ian G. Macara . Substrate Specificity of Mammalian N-Terminal α-Amino Methyltransferase NRMT. Biochemistry 2012, 51 (30) , 5942-5950. https://doi.org/10.1021/bi300278f
    38. Thiago Verano-Braga, Veit Schwämmle, Marc Sylvester, Danielle G. Passos-Silva, Antonio A. B. Peluso, Gisele M. Etelvino, Robson A. S. Santos, and Peter Roepstorff . Time-Resolved Quantitative Phosphoproteomics: New Insights into Angiotensin-(1–7) Signaling Networks in Human Endothelial Cells. Journal of Proteome Research 2012, 11 (6) , 3370-3381. https://doi.org/10.1021/pr3001755
    39. Bryan R. Fonslow, Sherry M. Niessen, Meha Singh, Catherine C. L. Wong, Tao Xu, Paulo C. Carvalho, Jeong Choi, Sung Kyu Park, and John R. Yates, III . Single-Step Inline Hydroxyapatite Enrichment Facilitates Identification and Quantitation of Phosphopeptides from Mass-Limited Proteomes with MudPIT. Journal of Proteome Research 2012, 11 (5) , 2697-2709. https://doi.org/10.1021/pr300200x
    40. Thiemo B. Schreiber, Nina Mäusbacher, Joanna Soroka, Sebastian K. Wandinger, Johannes Buchner, and Henrik Daub . Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. Journal of Proteome Research 2012, 11 (4) , 2397-2408. https://doi.org/10.1021/pr201134p
    41. Yali Lu, Xiao Zhou, Paul M. Stemmer, Gavin E. Reid. Sulfonium Ion Derivatization, Isobaric Stable Isotope Labeling and Data Dependent CID- and ETD-MS/MS for Enhanced Phosphopeptide Quantitation, Identification and Phosphorylation Site Characterization. Journal of the American Society for Mass Spectrometry 2012, 23 (4) , 577-593. https://doi.org/10.1007/s13361-011-0190-0
    42. Ryan J. Eismin, Mingkun Fu, Sonoeun Yem, Fanny Widjaja, Hilkka I. Kenttämaa. Identification of Epoxide Functionalities in Protonated Monofunctional Analytes by Using Ion/Molecule Reactions and Collision-Activated Dissociation in Different Ion Trap Tandem Mass Spectrometers. Journal of the American Society for Mass Spectrometry 2012, 23 (1) , 12-22. https://doi.org/10.1007/s13361-011-0249-y
    43. Thomas Taus, Thomas Köcher, Peter Pichler, Carmen Paschke, Andreas Schmidt, Christoph Henrich, and Karl Mechtler . Universal and Confident Phosphorylation Site Localization Using phosphoRS. Journal of Proteome Research 2011, 10 (12) , 5354-5362. https://doi.org/10.1021/pr200611n
    44. Kasper Engholm-Keller, Thomas Aarup Hansen, Giuseppe Palmisano, and Martin R. Larsen . Multidimensional Strategy for Sensitive Phosphoproteomics Incorporating Protein Prefractionation Combined with SIMAC, HILIC, and TiO2 Chromatography Applied to Proximal EGF Signaling. Journal of Proteome Research 2011, 10 (12) , 5383-5397. https://doi.org/10.1021/pr200641x
    45. Fangjun Wang, Chunxia Song, Kai Cheng, Xinning Jiang, Mingliang Ye, and Hanfa Zou . Perspectives of Comprehensive Phosphoproteome Analysis Using Shotgun Strategy. Analytical Chemistry 2011, 83 (21) , 8078-8085. https://doi.org/10.1021/ac201833j
    46. Mostafa Zarei, Adrian Sprenger, Fabian Metzger, Christine Gretzmeier, and Joern Dengjel . Comparison of ERLIC–TiO2, HILIC–TiO2, and SCX–TiO2 for Global Phosphoproteomics Approaches. Journal of Proteome Research 2011, 10 (8) , 3474-3483. https://doi.org/10.1021/pr200092z
    47. Hannes Hahne, Bernhard Kuster. A Novel Two-Stage Tandem Mass Spectrometry Approach and Scoring Scheme for the Identification of O-GlcNAc Modified Peptides. Journal of the American Society for Mass Spectrometry 2011, 22 (5) , 931-942. https://doi.org/10.1007/s13361-011-0107-y
    48. Chih-Wei Liu, Chien-Chen Lai. Effects of Electron-Transfer Coupled with Collision-Induced Dissociation (ET/CID) on Doubly Charged Peptides and Phosphopeptides. Journal of the American Society for Mass Spectrometry 2011, 22 (1) , 57-66. https://doi.org/10.1007/s13361-010-0020-9
    49. Aaron R. Ledvina, Nicole A. Beauchene, Graeme C. McAlister, John E. P. Syka, Jae C. Schwartz, Jens Griep-Raming, Michael S. Westphall, and Joshua J. Coon . Activated-Ion Electron Transfer Dissociation Improves the Ability of Electron Transfer Dissociation to Identify Peptides in a Complex Mixture. Analytical Chemistry 2010, 82 (24) , 10068-10074. https://doi.org/10.1021/ac1020358
    50. Nagarjuna Nagaraj, Rochelle C. J. D’Souza, Juergen Cox, Jesper V. Olsen, and Matthias Mann . Feasibility of Large-Scale Phosphoproteomics with Higher Energy Collisional Dissociation Fragmentation. Journal of Proteome Research 2010, 9 (12) , 6786-6794. https://doi.org/10.1021/pr100637q
    51. Mikhail M. Savitski, Arjen Scholten, Gavain Sweetman, Toby Mathieson, and Marcus Bantscheff. Evaluation of Data Analysis Strategies for Improved Mass Spectrometry-Based Phosphoproteomics. Analytical Chemistry 2010, 82 (23) , 9843-9849. https://doi.org/10.1021/ac102083q
    52. Susanne B. Breitkopf, Felix S. Oppermann, György Kéri, Markus Grammel, and Henrik Daub . Proteomics Analysis of Cellular Imatinib Targets and their Candidate Downstream Effectors. Journal of Proteome Research 2010, 9 (11) , 6033-6043. https://doi.org/10.1021/pr1008527
    53. Song Nie, Jie Dai, Zhi-Bin Ning, Xing-Jun Cao, Quan-Hu Sheng and Rong Zeng. Comprehensive Profiling of Phosphopeptides Based on Anion Exchange Followed by Flow-Through Enrichment with Titanium Dioxide (AFET). Journal of Proteome Research 2010, 9 (9) , 4585-4594. https://doi.org/10.1021/pr100632h
    54. Tine E. Thingholm, Giuseppe Palmisano, Frank Kjeldsen and Martin R. Larsen. Undesirable Charge-Enhancement of Isobaric Tagged Phosphopeptides Leads to Reduced Identification Efficiency. Journal of Proteome Research 2010, 9 (8) , 4045-4052. https://doi.org/10.1021/pr100230q
    55. Wiebke Timm, Nurhan Ozlu, Judith J. Steen and Hanno Steen . Effect of High-Accuracy Precursor Masses on Phosphopeptide Identification from MS3 Spectra. Analytical Chemistry 2010, 82 (10) , 3977-3980. https://doi.org/10.1021/ac100118u
    56. Fabio R. Cerqueira, Armin Graber, Benno Schwikowski and Christian Baumgartner. MUDE: A New Approach for Optimizing Sensitivity in the Target-Decoy Search Strategy for Large-Scale Peptide/Protein Identification. Journal of Proteome Research 2010, 9 (5) , 2265-2277. https://doi.org/10.1021/pr901023v
    57. Kirti Sharma, Chanchal Kumar, György Kéri, Susanne B. Breitkopf, Felix S. Oppermann and Henrik Daub . Quantitative Analysis of Kinase-Proximal Signaling in Lipopolysaccharide-Induced Innate Immune Response. Journal of Proteome Research 2010, 9 (5) , 2539-2549. https://doi.org/10.1021/pr901192p
    58. Christian Johannes Gloeckner, Karsten Boldt, Felix von Zweydorf, Sandra Helm, Ludwig Wiesent, Hakan Sarioglu and Marius Ueffing . Phosphopeptide Analysis Reveals Two Discrete Clusters of Phosphorylation in the N-Terminus and the Roc Domain of the Parkinson-Disease Associated Protein Kinase LRRK2. Journal of Proteome Research 2010, 9 (4) , 1738-1745. https://doi.org/10.1021/pr9008578
    59. Alexander Leitner, Martin Sturm, Otto Hudecz, Michael Mazanek, Jan-Henrik Smått, Mika Lindén, Wolfgang Lindner and Karl Mechtler . Probing the Phosphoproteome of HeLa Cells Using Nanocast Metal Oxide Microspheres for Phosphopeptide Enrichment. Analytical Chemistry 2010, 82 (7) , 2726-2733. https://doi.org/10.1021/ac902560z
    60. Tianzhu Zang, Shujia Dai, Dajun Chen, Bobby W. K. Lee, Suli Liu, Barry L. Karger and Zhaohui Sunny Zhou. Chemical Methods for the Detection of Protein N-Homocysteinylation via Selective Reactions with Aldehydes. Analytical Chemistry 2009, 81 (21) , 9065-9071. https://doi.org/10.1021/ac9017132
    61. Kumaran Kandasamy, Akhilesh Pandey and Henrik Molina . Evaluation of Several MS/MS Search Algorithms for Analysis of Spectra Derived from Electron Transfer Dissociation Experiments. Analytical Chemistry 2009, 81 (17) , 7170-7180. https://doi.org/10.1021/ac9006107
    62. Dorota F. Zielinska, Florian Gnad, Monika Jedrusik-Bode, Jacek R. Wiśniewski and Matthias Mann . Caenorhabditis elegans Has a Phosphoproteome Atypical for Metazoans That Is Enriched in Developmental and Sex Determination Proteins. Journal of Proteome Research 2009, 8 (8) , 4039-4049. https://doi.org/10.1021/pr900384k
    63. Mingkun Fu, Penggao Duan, Sen Li, Ryan J. Eismin, Hilkka I. Kenttämaa. An ion/molecule reaction for the identification of analytes with two basic functional groups. Journal of the American Society for Mass Spectrometry 2009, 20 (7) , 1251-1262. https://doi.org/10.1016/j.jasms.2009.02.020
    64. Grady R. Blacken, Michael Volný, Matthew Diener, Karl E. Jackson, Pratistha Ranjitkar, Dustin J. Maly, František Tureček. Reactive landing of gas-phase ions as a tool for the fabrication of metal oxide surfaces for in situ phosphopeptide enrichment. Journal of the American Society for Mass Spectrometry 2009, 20 (6) , 915-926. https://doi.org/10.1016/j.jasms.2009.01.006
    65. Sharon Gauci, Andreas O. Helbig, Monique Slijper, Jeroen Krijgsveld, Albert J. R. Heck and Shabaz Mohammed. Lys-N and Trypsin Cover Complementary Parts of the Phosphoproteome in a Refined SCX-Based Approach. Analytical Chemistry 2009, 81 (11) , 4493-4501. https://doi.org/10.1021/ac9004309
    66. Joshua J. Coon. Collisions or Electrons? Protein Sequence Analysis in the 21st Century. Analytical Chemistry 2009, 81 (9) , 3208-3215. https://doi.org/10.1021/ac802330b
    67. Peter J. Ulintz, Anastasia K. Yocum, Bernd Bodenmiller, Ruedi Aebersold, Philip C. Andrews and Alexey I. Nesvizhskii . Comparison of MS2-Only, MSA, and MS2/MS3 Methodologies for Phosphopeptide Identification. Journal of Proteome Research 2009, 8 (2) , 887-899. https://doi.org/10.1021/pr800535h
    68. Qibin Zhang, Jennifer M. Ames, Richard D. Smith, John W. Baynes and Thomas O. Metz . A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease. Journal of Proteome Research 2009, 8 (2) , 754-769. https://doi.org/10.1021/pr800858h
    69. Jie Dai, Lian-Shui Wang, Yi-Bo Wu, Quan-Hu Sheng, Jia-Rui Wu, Chia-Hui Shieh and Rong Zeng. Fully Automatic Separation and Identification of Phosphopeptides by Continuous pH-Gradient Anion Exchange Online Coupled with Reversed-Phase Liquid Chromatography Mass Spectrometry. Journal of Proteome Research 2009, 8 (1) , 133-141. https://doi.org/10.1021/pr800381w
    70. Amanda M. Palumbo and Gavin E. Reid . Evaluation of Gas-Phase Rearrangement and Competing Fragmentation Reactions on Protein Phosphorylation Site Assignment Using Collision Induced Dissociation-MS/MS and MS3. Analytical Chemistry 2008, 80 (24) , 9735-9747. https://doi.org/10.1021/ac801768s
    71. Sara Zanivan, Florian Gnad, Sara A. Wickström, Tami Geiger, Boris Macek, Jürgen Cox, Reinhard Fässler and Matthias Mann . Solid Tumor Proteome and Phosphoproteome Analysis by High Resolution Mass Spectrometry. Journal of Proteome Research 2008, 7 (12) , 5314-5326. https://doi.org/10.1021/pr800599n
    72. Kristie L. Rose, Andra Li, Irina Zalenskaya, Yun Zhang, Emmanuel Unni, Kim C. Hodgson, Yaping Yu, Jeffrey Shabanowitz, Marvin L. Meistrich, Donald F. Hunt and Juan Ausió . C-Terminal Phosphorylation of Murine Testis-Specific Histone H1t in Elongating Spermatids. Journal of Proteome Research 2008, 7 (9) , 4070-4078. https://doi.org/10.1021/pr8003908
    73. Justyna Maria Czarna Bahl, Søren Skov Jensen, Martin R. Larsen and Niels H. H. Heegaard . Characterization of the Human Cerebrospinal Fluid Phosphoproteome by Titanium Dioxide Affinity Chromatography and Mass Spectrometry. Analytical Chemistry 2008, 80 (16) , 6308-6316. https://doi.org/10.1021/ac800835y
    74. Cristian I. Ruse, Daniel B. McClatchy, Bingwen Lu, Daniel Cociorva, Akira Motoyama, Sung Kyu Park and John R. Yates, III. Motif-Specific Sampling of Phosphoproteomes. Journal of Proteome Research 2008, 7 (5) , 2140-2150. https://doi.org/10.1021/pr800147u
    75. Pegah R. Jalili, Haydn L. Ball. Novel reversible biotinylated probe for the selective enrichment of phosphorylated peptides from complex mixtures. Journal of the American Society for Mass Spectrometry 2008, 19 (5) , 741-750. https://doi.org/10.1016/j.jasms.2008.02.004
    76. Shabaz Mohammed, Karsten Kraiczek, Martijn W. H. Pinkse, Simone Lemeer, Joris J. Benschop and Albert J. R. Heck . Chip-Based Enrichment and NanoLC−MS/MS Analysis of Phosphopeptides from Whole Lysates. Journal of Proteome Research 2008, 7 (4) , 1565-1571. https://doi.org/10.1021/pr700635a
    77. Amanda M. Palumbo, Jetze J. Tepe and Gavin E. Reid . Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. Journal of Proteome Research 2008, 7 (2) , 771-779. https://doi.org/10.1021/pr0705136
    78. Grady R. Blacken,, Michael Volný,, Tomáš Vaisar,, Martin Sadílek, and, František Tureček. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)−n-Propoxide Ions. Analytical Chemistry 2007, 79 (14) , 5449-5456. https://doi.org/10.1021/ac070790w
    79. Danielle L. Swaney,, Graeme C. McAlister,, Matthew Wirtala,, Jae C. Schwartz,, John E. P. Syka, and, Joshua J. Coon. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Analytical Chemistry 2007, 79 (2) , 477-485. https://doi.org/10.1021/ac061457f
    80. Grady R. Blacken,, Michael H. Gelb, and, František Tureček. Metal Affinity Capture Tandem Mass Spectrometry for the Selective Detection of Phosphopeptides. Analytical Chemistry 2006, 78 (17) , 6065-6073. https://doi.org/10.1021/ac060509y
    81. Can Bruce,, Mark A. Shifman,, Perry Miller, and, Erol E. Gulcicek. Probabilistic Enrichment of Phosphopeptides by Their Mass Defect. Analytical Chemistry 2006, 78 (13) , 4374-4382. https://doi.org/10.1021/ac060046w
    82. Julie B. King,, Julia Gross,, Christine M. Lovly,, Henry Rohrs,, Helen Piwnica-Worms, and, R. Reid Townsend. Accurate Mass-Driven Analysis for the Characterization of Protein Phosphorylation. Study of the Human Chk2 Protein Kinase. Analytical Chemistry 2006, 78 (7) , 2171-2181. https://doi.org/10.1021/ac051520l
    83. Melanie J. Schroeder,, Donna J. Webb,, Jeffrey Shabanowitz,, Alan F. Horwitz, and, Donald F. Hunt. Methods for the Detection of Paxillin Post-translational Modifications and Interacting Proteins by Mass Spectrometry. Journal of Proteome Research 2005, 4 (5) , 1832-1841. https://doi.org/10.1021/pr0502020
    84. Stephen Tanner,, Hongjun Shu,, Ari Frank,, Ling-Chi Wang,, Ebrahim Zandi,, Marc Mumby,, Pavel A. Pevzner, and, Vineet Bafna. InsPecT:  Identification of Posttranslationally Modified Peptides from Tandem Mass Spectra. Analytical Chemistry 2005, 77 (14) , 4626-4639. https://doi.org/10.1021/ac050102d
    85. Joseph A. DeGiorgis,, Howard Jaffe,, Jorge E. Moreira,, Carlos G. CarlottiJr.,, João P. Leite,, Harish C. Pant, and, Ayse Dosemeci. Phosphoproteomic Analysis of Synaptosomes from Human Cerebral Cortex. Journal of Proteome Research 2005, 4 (2) , 306-315. https://doi.org/10.1021/pr0498436
    86. Heather A. Cox,, Robert Hodyss, and, J. L. Beauchamp. Cluster-Phase Reactions:  Gas-Phase Phosphorylation of Peptides and Model Compounds with Triphosphate Anions. Journal of the American Chemical Society 2005, 127 (11) , 4084-4090. https://doi.org/10.1021/ja0452673
    87. Noah M. Lancaster, Pavel Sinitcyn, Patrick Forny, Trenton M. Peters-Clarke, Caroline Fecher, Andrew J. Smith, Evgenia Shishkova, Tabiwang N. Arrey, Anna Pashkova, Margaret Lea Robinson, Nicholas Arp, Jing Fan, Juli Hansen, Andrea Galmozzi, Lia R. Serrano, Julie Rojas, Audrey P. Gasch, Michael S. Westphall, Hamish Stewart, Christian Hock, Eugen Damoc, David J. Pagliarini, Vlad Zabrouskov, Joshua J. Coon. Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-51274-0
    88. Yifei He, Pengyi Hou, Zhimin Long, Yuandong Zheng, Chongzhuang Tang, Elliott Jones, Xingxing Diao, Mingshe Zhu. Application of Electro-Activated Dissociation Fragmentation Technique to Identifying Glucuronidation and Oxidative Metabolism Sites of Vepdegestrant by Liquid Chromatography-High Resolution Mass Spectrometry. Drug Metabolism and Disposition 2024, 52 (7) , 634-643. https://doi.org/10.1124/dmd.124.001661
    89. Anja Liese, Bernadette Eichstädt, Sarah Lederer, Philipp Schulz, Jan Oehlschläger, Susanne Matschi, José A Feijó, Waltraud X Schulze, Kai R Konrad, Tina Romeis. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. The Plant Cell 2024, 36 (2) , 276-297. https://doi.org/10.1093/plcell/koad196
    90. Taewook Kang, Santosh Bhosale, Alistair Edwards, Martin R. Larsen. Phosphoproteomics: Methods and Challenges. 2023, 417-429. https://doi.org/10.1016/B978-0-12-821618-7.00031-6
    91. Yoshiyuki Kamiya, Takuji Nakashima, Takako Taniguchi, Yōko Takahashi, Satoshi Ōmura, Hisaaki Taniguchi. Detection and characterization of new mangromicin analogs by tandem mass spectrometry. Bioscience, Biotechnology, and Biochemistry 2022, 86 (12) , 1605-1614. https://doi.org/10.1093/bbb/zbac153
    92. Brandon M. Gassaway, Jiaming Li, Ramin Rad, Julian Mintseris, Kyle Mohler, Tyler Levy, Mike Aguiar, Sean A. Beausoleil, Joao A. Paulo, Jesse Rinehart, Edward L. Huttlin, Steven P. Gygi. A multi-purpose, regenerable, proteome-scale, human phosphoserine resource for phosphoproteomics. Nature Methods 2022, 19 (11) , 1371-1375. https://doi.org/10.1038/s41592-022-01638-5
    93. Jiapei Yan, Shibai Li, Yeon Jeong Kim, Qingning Zeng, Amandine Radziejwoski, Lei Wang, Yuko Nomura, Hirofumi Nakagami, David E Somers. TOC1 clock protein phosphorylation controls complex formation with NF‐YB/C to repress hypocotyl growth. The EMBO Journal 2021, 40 (24) https://doi.org/10.15252/embj.2021108684
    94. Dongqing Huang, Shrabanti Chowdhury, Hong Wang, Sara R. Savage, Richard G. Ivey, Jacob J. Kennedy, Jeffrey R. Whiteaker, Chenwei Lin, Xiaonan Hou, Ann L. Oberg, Melissa C. Larson, Najmeh Eskandari, Davide A. Delisi, Saverio Gentile, Catherine J. Huntoon, Uliana J. Voytovich, Zahra J. Shire, Qing Yu, Steven P. Gygi, Andrew N. Hoofnagle, Zachary T. Herbert, Travis D. Lorentzen, Anna Calinawan, Larry M. Karnitz, S. John Weroha, Scott H. Kaufmann, Bing Zhang, Pei Wang, Michael J. Birrer, Amanda G. Paulovich. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Reports Medicine 2021, 2 (12) , 100471. https://doi.org/10.1016/j.xcrm.2021.100471
    95. Taro Kimura, Ken Haga, Yuko Nomura, Takumi Higaki, Hirofumi Nakagami, Tatsuya Sakai. Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response. Plant Physiology 2021, 187 (2) , 981-995. https://doi.org/10.1093/plphys/kiab281
    96. Maxim Vasilyev, Semyon Rudyi, Yuri Rozhdestvensky. Theoretical description of electric fields in three-dimensional multipole ion traps. European Journal of Mass Spectrometry 2021, 27 (5) , 158-165. https://doi.org/10.1177/14690667211047918
    97. Xinyue Liu, Rose Fields, Devin K. Schweppe, Joao A. Paulo. Strategies for mass spectrometry-based phosphoproteomics using isobaric tagging. Expert Review of Proteomics 2021, 18 (9) , 795-807. https://doi.org/10.1080/14789450.2021.1994390
    98. Joao A. Paulo, Devin K. Schweppe. Advances in quantitative high‐throughput phosphoproteomics with sample multiplexing. PROTEOMICS 2021, 21 (9) https://doi.org/10.1002/pmic.202000140
    99. Lenka Halova, David Cobley, Mirita Franz-Wachtel, Tingting Wang, Kaitlin R. Morrison, Karsten Krug, Nicolas Nalpas, Boris Maček, Iain M. Hagan, Sean J. Humphrey, Janni Petersen. A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Open Biology 2021, 11 (4) https://doi.org/10.1098/rsob.200405
    100. Andreas Schummer, Renate Maier, Shiran Gabay-Maskit, Tobias Hansen, Wignand W. D. Mühlhäuser, Ida Suppanz, Amir Fadel, Maya Schuldiner, Wolfgang Girzalsky, Silke Oeljeklaus, Einat Zalckvar, Ralf Erdmann, Bettina Warscheid. Pex14p Phosphorylation Modulates Import of Citrate Synthase 2 Into Peroxisomes in Saccharomyces cerevisiae. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.549451
    Load more citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 13, 3590–3598
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac0497104
    Published May 18, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    2968

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.