Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Function of Members of the Neuropilin Family as Essential Pleiotropic Cell Surface Receptors
My Activity
CONTENT TYPES
    Current Topic

    Function of Members of the Neuropilin Family as Essential Pleiotropic Cell Surface Receptors
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, United States
    *Address: 741 S. Limestone St., BBSRB B263, Lexington, KY 40536. Telephone: (859) 323-8418. Fax: (859) 257-2283. E-mail: [email protected]
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2012, 51, 47, 9437–9446
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi3012143
    Published November 1, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The neuropilin (Nrp) family consists of essential multifunctional vertebrate cell surface receptors. Nrps were initially characterized as receptors for class III Semaphorin (Sema3) family members, functioning in axon guidance. Nrps have also been shown to be critical for vascular endothelial growth factor-dependent angiogenesis. Intriguingly, recent data show that Nrp function in these seemingly divergent pathways is critically determined by ligand-mediated cross-talk, which underlies Nrp function in both physiological and pathological processes. In addition to functioning in these two pathways, Nrps have been shown to specifically function in a number of other fundamental signaling pathways as well. Multiple general mechanisms have been found to directly contribute to the pleiotropic function of Nrp. Here we review critical general features of Nrps that function as essential receptors integrating multiple molecular cues into diverse cellular signaling.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Kyle J. Gerber, Eric B. Dammer, Duc M. Duong, Qiudong Deng, Serena M. Dudek, Nicholas T. Seyfried, John R. Hepler. Specific Proteomes of Hippocampal Regions CA2 and CA1 Reveal Proteins Linked to the Unique Physiology of Area CA2. Journal of Proteome Research 2019, 18 (6) , 2571-2584. https://doi.org/10.1021/acs.jproteome.9b00103
    2. Hou-Fu Guo, Xiaobo Li, Matthew W. Parker, Johannes Waltenberger, Patrice M. Becker, and Craig W. Vander Kooi . Mechanistic Basis for the Potent Anti-Angiogenic Activity of Semaphorin 3F. Biochemistry 2013, 52 (43) , 7551-7558. https://doi.org/10.1021/bi401034q
    3. Pengcheng Shang, Rita dos Santos Natividade, Gwen M. Taylor, Ankita Ray, Olivia L. Welsh, Kay L. Fiske, Danica M. Sutherland, David Alsteens, Terence S. Dermody. NRP1 is a receptor for mammalian orthoreovirus engaged by distinct capsid subunits. Cell Host & Microbe 2024, 32 (6) , 980-995.e9. https://doi.org/10.1016/j.chom.2024.04.014
    4. Alina A. Isakova, Artem A. Artykov, Ekaterina A. Plotnikova, Galina V. Trunova, Varvara А. Khokhlova, Andrey A. Pankratov, Margarita L. Shuvalova, Diana V. Mazur, Nadezhda V. Antipova, Mikhail I. Shakhparonov, Dmitry A. Dolgikh, Mikhail P. Kirpichnikov, Marine E. Gasparian, Anne V. Yagolovich. Dual targeting of DR5 and VEGFR2 molecular pathways by multivalent fusion protein significantly suppresses tumor growth and angiogenesis. International Journal of Biological Macromolecules 2024, 255 , 128096. https://doi.org/10.1016/j.ijbiomac.2023.128096
    5. Syeda Mahak Zahra Bokhari, Peter Hamar. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. International Journal of Molecular Sciences 2023, 24 (17) , 13317. https://doi.org/10.3390/ijms241713317
    6. Chong Pyo Choe. A Feasible Role of Neuropilin Signaling in Pharyngeal Pouch Formation in Zebrafish. Development & Reproduction 2023, 27 (3) , 137-147. https://doi.org/10.12717/DR.2023.27.3.137
    7. Rebecca Maria Ignatz, Vanessa Antje Zirkenbach, Mansur Kaya, Vera Stroikova, Renate Öttl, Norbert Frey, Ziya Kaya. No Evidence for Myocarditis or Other Organ Affection by Induction of an Immune Response against Critical SARS-CoV-2 Protein Epitopes in a Mouse Model Susceptible for Autoimmunity. International Journal of Molecular Sciences 2023, 24 (12) , 9873. https://doi.org/10.3390/ijms24129873
    8. Anna Sankiewicz, Beata Zelazowska-Rutkowska, Ewelina Gorska, Adam Hermanowicz, Ewa Gorodkiewicz. New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging. Sensors 2023, 23 (8) , 4118. https://doi.org/10.3390/s23084118
    9. Diego Prieto, Karina Pino-Lagos, Ornella Realini, Felipe Cáceres, Ignacio Retamal, Alejandra Chaparro. Relationship between soluble neuropilin-1 in the gingival crevicular fluid of early pregnant women and different severities of periodontitis: A cross-sectional study. Journal of Oral Biology and Craniofacial Research 2023, 13 (2) , 321-326. https://doi.org/10.1016/j.jobcr.2023.03.001
    10. Suniti Bhaumik, Marzena Łazarczyk, Norwin Kubick, Pavel Klimovich, Agata Gurba, Justyna Paszkiewicz, Patrycja Teodorowicz, Tomasz Kocki, Jarosław Olav Horbańczuk, Gina Manda, Mariusz Sacharczuk, Michel-Edwar Mickael. Investigation of the Molecular Evolution of Treg Suppression Mechanisms Indicates a Convergent Origin. Current Issues in Molecular Biology 2023, 45 (1) , 628-648. https://doi.org/10.3390/cimb45010042
    11. Eman Alshawaf, Maha M. Hammad, Sulaiman K. Marafie, Hamad Ali, Fahd Al-Mulla, Jehad Abubaker, Anwar Mohammad. Discovery of natural products to block SARS-CoV-2 S-protein interaction with Neuropilin-1 receptor: A molecular dynamics simulation approach. Microbial Pathogenesis 2022, 170 , 105701. https://doi.org/10.1016/j.micpath.2022.105701
    12. Yu Qin, Aumreetam Dinabandhu, Xuan Cao, Jaron Castillo Sanchez, Kathleen Jee, Murilo Rodrigues, Chuanyu Guo, Jing Zhang, Jordan Vancel, Deepak Menon, Noore-Sabah Khan, Tao Ma, Stephany Y. Tzeng, Yassine Daoud, Jordan J. Green, Gregg L. Semenza, Silvia Montaner, Akrit Sodhi. ANGPTL4 influences the therapeutic response of patients with neovascular age-related macular degeneration by promoting choroidal neovascularization. JCI Insight 2022, 7 (13) https://doi.org/10.1172/jci.insight.157896
    13. Chun Yao, Yuqi Cao, Dong Wang, Yehua Lv, Yan Liu, Xiaosong Gu, Yongjun Wang, Xuhua Wang, Bin Yu. Single‐cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. The FASEB Journal 2022, 36 (7) https://doi.org/10.1096/fj.202200337R
    14. Mauricio Campos‐Mora, Javiera De Solminihac, Carolina Rojas, Cristina Padilla, Mónica Kurte, Rodrigo Pacheco, Thilo Kaehne, Úrsula Wyneken, Karina Pino‐Lagos. Neuropilin‐1 is present on Foxp3+ T regulatory cell‐derived small extracellular vesicles and mediates immunity against skin transplantation. Journal of Extracellular Vesicles 2022, 11 (6) https://doi.org/10.1002/jev2.12237
    15. O. A. Gomazkov. Neuropilin Is a New Player in the Pathogenesis of COVID-19. Neurochemical Journal 2022, 16 (2) , 130-135. https://doi.org/10.1134/S1819712422020064
    16. Steven E. Massey. Host Manipulation Mechanisms of SARS-CoV-2. Acta Biotheoretica 2022, 70 (1) https://doi.org/10.1007/s10441-021-09425-z
    17. Nawamin Sa-nguanmoo, Katawut Namdee, Mattaka Khongkow, Uracha Ruktanonchai, YongXiang Zhao, Xing-Jie Liang. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Research 2022, 15 (3) , 2196-2225. https://doi.org/10.1007/s12274-021-3832-y
    18. Charles Eldrid, Mire Zloh, Constantina Fotinou, Tamas Yelland, Lefan Yu, Filipa Mota, David L. Selwood, Snezana Djordjevic. VEGFA, B, C: Implications of the C-Terminal Sequence Variations for the Interaction with Neuropilins. Biomolecules 2022, 12 (3) , 372. https://doi.org/10.3390/biom12030372
    19. Domenico Ribatti, Francesco Pezzella. The lymphatic system. 2022, 57-66. https://doi.org/10.1016/B978-0-12-824371-8.00002-5
    20. Rong Hu, Mengting Shi, Haipeng Xu, Xingying Wu, Kelin He, Yi Chen, Lei Wu, Ruijie Ma. Integrated bioinformatics analysis identifies the effects of Sema3A/NRP1 signaling in oligodendrocytes after spinal cord injury in rats. PeerJ 2022, 10 , e13856. https://doi.org/10.7717/peerj.13856
    21. Hideki Kusunoki, Toshiyuki Tanaka, Chinatsu Ohshima, Taiichi Sakamoto, Kaori Wakamatsu, Isao Hamaguchi. The N93D mutation of the human T-cell leukemia virus type 1 envelope glycoprotein found in symptomatic patients enhances neuropilin-1 b1 domain binding. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2021, 1869 (11) , 140708. https://doi.org/10.1016/j.bbapap.2021.140708
    22. Sarvenaz Sarabipour, Feilim Mac Gabhann. Targeting neuropilins as a viable SARS‐CoV‐2 treatment. The FEBS Journal 2021, 288 (17) , 5122-5129. https://doi.org/10.1111/febs.16096
    23. Junhua Huang, Shuwan Zhang, . Overexpressed Neuropilin-1 in Endothelial Cells Promotes Endothelial Permeability through Interaction with ANGPTL4 and VEGF in Kawasaki Disease. Mediators of Inflammation 2021, 2021 , 1-8. https://doi.org/10.1155/2021/9914071
    24. Ahmed O. Shalash, Waleed M. Hussein, Mariusz Skwarczynski, Istvan Toth. Key Considerations for the Development of Safe and Effective SARS‐CoV‐2 Subunit Vaccine: A Peptide‐Based Vaccine Alternative. Advanced Science 2021, 8 (16) https://doi.org/10.1002/advs.202100985
    25. Shaun M. Christie, Jing Hao, Erin Tracy, Matthias Buck, Jennifer S. Yu, Adam W. Smith. Interactions between semaphorins and plexin–neuropilin receptor complexes in the membranes of live cells. Journal of Biological Chemistry 2021, 297 (2) , 100965. https://doi.org/10.1016/j.jbc.2021.100965
    26. Li Wang, Lanlan Wang, Shengyu Wang, Zonglang Zhou, Zongjunlin Liu, Peilan Xu, Xian Luo, Ting Wu, Fanghong Luo, Jianghua Yan. N2E4, a Monoclonal Antibody Targeting Neuropilin-2, Inhibits Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma via Suppressing FAK/Erk/HIF-1α Signaling. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.657008
    27. Aitor Benedicto, Iñigo García-Kamiruaga, Beatriz Arteta. Neuropilin-1: A feasible link between liver pathologies and COVID-19. World Journal of Gastroenterology 2021, 27 (24) , 3516-3529. https://doi.org/10.3748/wjg.v27.i24.3516
    28. Sonia Beeckmans, Edilbert Van Driessche. Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.671923
    29. Diego Prieto, Camila González, Laura Weber, Ornella Realini, Karina Pino-Lagos, Maria José Bendek, Ignacio Retamal, Víctor Beltrán, Juan Pablo Riedemann, Francisco Espinoza, Alejandra Chaparro. Soluble neuropilin-1 in gingival crevicular fluid is associated with rheumatoid arthritis: An exploratory case-control study. Journal of Oral Biology and Craniofacial Research 2021, 11 (2) , 303-307. https://doi.org/10.1016/j.jobcr.2021.02.010
    30. Anna Cariboni, Ravikumar Balasubramanian. Kallmann syndrome and idiopathic hypogonadotropic hypogonadism: The role of semaphorin signaling on GnRH neurons. 2021, 307-315. https://doi.org/10.1016/B978-0-12-819973-2.00022-8
    31. Diego Prieto, Gloria Maurer, Maximiliano Sáez, Felipe Cáceres, Karina Pino-Lagos, Alejandra Chaparro. Soluble Neuropilin-1 in gingival crevicular fluid from periodontitis patients: An exploratory cross-sectional study. Journal of Oral Biology and Craniofacial Research 2021, 11 (1) , 84-87. https://doi.org/10.1016/j.jobcr.2020.11.015
    32. Ahmed M. Said, Matthew W. Parker, Craig W. Vander Kooi. Design, synthesis, and evaluation of a novel benzamidine-based inhibitor of VEGF-C binding to Neuropilin-2. Bioorganic Chemistry 2020, 100 , 103856. https://doi.org/10.1016/j.bioorg.2020.103856
    33. Xiuping Huang, Qing Ye, Min Chen, Aimin Li, Wenting Mi, Yuxin Fang, Yekaterina Y. Zaytseva, Kathleen L. O’Connor, Craig W. Vander Kooi, Side Liu, Qing-Bai She. N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11580-4
    34. Akrit Sodhi, Tao Ma, Deepak Menon, Monika Deshpande, Kathleen Jee, Aumreetam Dinabandhu, Jordan Vancel, Daoyuan Lu, Silvia Montaner. Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. Journal of Clinical Investigation 2019, 129 (11) , 4593-4608. https://doi.org/10.1172/JCI120879
    35. Florent Morfoisse, Agnès Noel. Lymphatic and blood systems: Identical or fraternal twins?. The International Journal of Biochemistry & Cell Biology 2019, 114 , 105562. https://doi.org/10.1016/j.biocel.2019.105562
    36. Ali Mahdi, Behrad Darvishi, Keivan Majidzadeh‐A, Malihe Salehi, Leila Farahmand. Challenges facing antiangiogenesis therapy: The significant role of hypoxia‐inducible factor and MET in development of resistance to anti‐vascular endothelial growth factor‐targeted therapies. Journal of Cellular Physiology 2019, 234 (5) , 5655-5663. https://doi.org/10.1002/jcp.27414
    37. Ameer L. Elaimy, Arthur M. Mercurio. Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. Science Signaling 2018, 11 (552) https://doi.org/10.1126/scisignal.aau1165
    38. Hideki Kusunoki, Toshiyuki Tanaka, Toshiyuki Kohno, Kazuhiko Matsuhashi, Kazuo Hosoda, Kaori Wakamatsu, Isao Hamaguchi. A novel neuropilin-1–binding sequence in the human T-cell lymphotropic virus type 1 envelope glycoprotein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2018, 1866 (4) , 541-548. https://doi.org/10.1016/j.bbapap.2018.02.003
    39. Chloe Peach, Viviane Mignone, Maria Arruda, Diana Alcobia, Stephen Hill, Laura Kilpatrick, Jeanette Woolard. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. International Journal of Molecular Sciences 2018, 19 (4) , 1264. https://doi.org/10.3390/ijms19041264
    40. Chisato Tomida, Naoko Yamagishi, Hikaru Nagano, Takayuki Uchida, Ayako Ohno, Katsuya Hirasaka, Takeshi Nikawa, Shigetada Teshima-Kondo. VEGF pathway-targeting drugs induce evasive adaptation by activation of neuropilin-1/cMet in colon cancer cells. International Journal of Oncology 2018, 8 https://doi.org/10.3892/ijo.2018.4291
    41. Sabrina Rizzolio, Chiara Battistini, Gabriella Cagnoni, Maria Apicella, Viviana Vella, Silvia Giordano, Luca Tamagnone. Downregulating Neuropilin-2 Triggers a Novel Mechanism Enabling EGFR-Dependent Resistance to Oncogene-Targeted Therapies. Cancer Research 2018, 78 (4) , 1058-1068. https://doi.org/10.1158/0008-5472.CAN-17-2020
    42. G. Serini. OBSOLETE: Vascular Guidance Cues. 2018https://doi.org/10.1016/B978-0-12-801238-3.99546-1
    43. D. Valdembri, G. Serini, N. Gioelli. Vascular Guidance Cues. 2018, 616-626. https://doi.org/10.1016/B978-0-12-809657-4.99546-2
    44. Jordyn Feinstein, Bhama Ramkhelawon. Netrins & Semaphorins: Novel regulators of the immune response. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017, 1863 (12) , 3183-3189. https://doi.org/10.1016/j.bbadis.2017.09.010
    45. Virginia Correani, Laura Di Francesco, Giuseppina Mignogna, Cinzia Fabrizi, Stefano Leone, Alessandra Giorgi, Alessia Passeri, Roberto Casata, Lorenzo Fumagalli, Bruno Maras, M.Eugenia Schininà. Plasma Membrane Protein Profiling in Beta‐Amyloid‐Treated Microglia Cell Line. PROTEOMICS 2017, 17 (17-18) https://doi.org/10.1002/pmic.201600439
    46. Yumiko Nagao, Nao Nishida, Licht Toyo-oka, Atsushi Kawaguchi, Antonio Amoroso, Marco Carrozzo, Michio Sata, Masashi Mizokami, Katsushi Tokunaga, Yasuhito Tanaka. Genome-Wide Association Study Identifies Risk Variants for Lichen Planus in Patients With Hepatitis C Virus Infection. Clinical Gastroenterology and Hepatology 2017, 15 (6) , 937-944.e5. https://doi.org/10.1016/j.cgh.2016.12.029
    47. Matthew W. Parker, Craig W. Vander Kooi. Plate-Based Assay for Measuring Direct Semaphorin–Neuropilin Interactions. 2017, 73-87. https://doi.org/10.1007/978-1-4939-6448-2_5
    48. Tamas Yelland, Snezana Djordjevic. Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture. Structure 2016, 24 (11) , 2008-2015. https://doi.org/10.1016/j.str.2016.08.017
    49. Donatella Valdembri, Donatella Regano, Federica Maione, Enrico Giraudo, Guido Serini. Class 3 semaphorins in cardiovascular development. Cell Adhesion & Migration 2016, 10 (6) , 641-651. https://doi.org/10.1080/19336918.2016.1212805
    50. Yi‐Chun Isabella Tsai, Constantina Fotinou, Rohini Rana, Tamas Yelland, Paul Frankel, Ian Zachary, Snezana Djordjevic. Structural studies of neuropilin‐2 reveal a zinc ion binding site remote from the vascular endothelial growth factor binding pocket. The FEBS Journal 2016, 283 (10) , 1921-1934. https://doi.org/10.1111/febs.13711
    51. K.A. Thomas. Angiogenesis. 2016, 102-116. https://doi.org/10.1016/B978-0-12-394447-4.40019-2
    52. K.A. Thomas. Angiogenesis. 2016, 298-315. https://doi.org/10.1016/B978-0-12-821618-7.40019-2
    53. Xi Zhu, Yue Chen, Nai Zhang, Zhiqiang Zheng, Fengjun Zhao, Ni Liu, Chunlong Lv, Frederic A. Troy, Bing Wang. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconjugate Journal 2015, 32 (9) , 715-728. https://doi.org/10.1007/s10719-015-9622-6
    54. Hou-Fu Guo, Craig W. Vander Kooi. Neuropilin Functions as an Essential Cell Surface Receptor. Journal of Biological Chemistry 2015, 290 (49) , 29120-29126. https://doi.org/10.1074/jbc.R115.687327
    55. Ye-Jin Kim, Jeomil Bae, Tae-Hwan Shin, Se Hun Kang, Moonkyoung Jeong, Yunho Han, Ji-Ho Park, Seok-Ki Kim, Yong-Sung Kim. Immunoglobulin Fc-fused, neuropilin-1-specific peptide shows efficient tumor tissue penetration and inhibits tumor growth via anti-angiogenesis. Journal of Controlled Release 2015, 216 , 56-68. https://doi.org/10.1016/j.jconrel.2015.08.016
    56. Hu-bing Wu, Zhen Wang, Quan-shi Wang, Yan-jian Han, Meng Wang, Wen-lan Zhou, Hong-sheng Li, . Use of Labelled tLyP-1 as a Novel Ligand Targeting the NRP Receptor to Image Glioma. PLOS ONE 2015, 10 (9) , e0137676. https://doi.org/10.1371/journal.pone.0137676
    57. Sebastian Werneburg, Martina Mühlenhoff, Martin Stangel, Herbert Hildebrandt. Polysialic acid on SynCAM 1 in NG2 cells and on neuropilin‐2 in microglia is confined to intracellular pools that are rapidly depleted upon stimulation. Glia 2015, 63 (7) , 1240-1255. https://doi.org/10.1002/glia.22815
    58. Tzvetanka Bondeva, Gunter Wolf. Role of Neuropilin-1 in Diabetic Nephropathy. Journal of Clinical Medicine 2015, 4 (6) , 1293-1311. https://doi.org/10.3390/jcm4061293
    59. Matthew W. Parker, Andrew D. Linkugel, Hira Lal Goel, Tingting Wu, Arthur M. Mercurio, Craig W. Vander Kooi. Structural Basis for VEGF-C Binding to Neuropilin-2 and Sequestration by a Soluble Splice Form. Structure 2015, 23 (4) , 677-687. https://doi.org/10.1016/j.str.2015.01.018
    60. Xiaolan Yao, Samuel Bouyain. Splicing and Proteolytic Processing in VEGF Signaling: Now It Is the Coreceptor’s Turn. Structure 2015, 23 (4) , 610-611. https://doi.org/10.1016/j.str.2015.03.003
    61. Omar Abdel-Rahman. Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: Preclinical and clinical aspects. Critical Reviews in Oncology/Hematology 2015, 93 (1) , 18-27. https://doi.org/10.1016/j.critrevonc.2014.05.012
    62. Omar Abdel-Rahman. Vascular endothelial growth factor (VEGF) pathway and neuroendocrine neoplasms (NENs): prognostic and therapeutic considerations. Tumor Biology 2014, 35 (11) , 10615-10625. https://doi.org/10.1007/s13277-014-2612-7
    63. Evangelia Pantazaka, Evangelia Papadimitriou. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochimica et Biophysica Acta (BBA) - General Subjects 2014, 1840 (8) , 2643-2650. https://doi.org/10.1016/j.bbagen.2014.01.009
    64. Xiaobo Li, Matthew W. Parker, Craig W. Vander Kooi. Control of cellular motility by neuropilin-mediated physical interactions. Biomolecular Concepts 2014, 5 (2) , 157-166. https://doi.org/10.1515/bmc-2013-0035
    65. Haiyan Jia, Rehan Aqil, Lili Cheng, Chris Chapman, Shaheda Shaikh, Ashley Jarvis, A. W. Edith Chan, Basil Hartzoulakis, Ian M. Evans, Antonina Frolov, John Martin, Paul Frankel, Snezana Djordevic, Ian C. Zachary, David L. Selwood. N‐Terminal Modification of VEGF‐A C Terminus‐Derived Peptides Delineates Structural Features Involved in Neuropilin‐1 Binding and Functional Activity. ChemBioChem 2014, 15 (8) , 1161-1170. https://doi.org/10.1002/cbic.201300658
    66. Matthew W. Parker, Craig W. Vander Kooi. Microplate-based screening for small molecule inhibitors of neuropilin-2/vascular endothelial growth factor-C interactions. Analytical Biochemistry 2014, 453 , 4-6. https://doi.org/10.1016/j.ab.2014.02.017
    67. HAIYING ZHOU, AIPING WU, WEI FU, ZHENG LV, ZHIYONG ZHANG. Significance of semaphorin-3A and MMP-14 protein expression in non-small cell lung cancer. Oncology Letters 2014, 7 (5) , 1395-1400. https://doi.org/10.3892/ol.2014.1920
    68. Hira Lal Goel, Arthur M. Mercurio. VEGF targets the tumour cell. Nature Reviews Cancer 2013, 13 (12) , 871-882. https://doi.org/10.1038/nrc3627
    69. Matthew W. Parker, Andrew D. Linkugel, Craig W. Vander Kooi. Effect of C-Terminal Sequence on Competitive Semaphorin Binding to Neuropilin-1. Journal of Molecular Biology 2013, 425 (22) , 4405-4414. https://doi.org/10.1016/j.jmb.2013.07.017
    70. Atsushi Kumanogoh, Hitoshi Kikutani. Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nature Reviews Immunology 2013, 13 (11) , 802-814. https://doi.org/10.1038/nri3545

    Biochemistry

    Cite this: Biochemistry 2012, 51, 47, 9437–9446
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi3012143
    Published November 1, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1397

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.