Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
A theoretical analysis of the hydroxyl stretching spectra of ice Ih, liquid water, and amorphous solid water
My Activity
CONTENT TYPES

Figure 1Loading Img
    Article

    A theoretical analysis of the hydroxyl stretching spectra of ice Ih, liquid water, and amorphous solid water
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1983, 87, 21, 4295–4308
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100244a061
    Published October 1, 1983

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 88 publications.

    1. R. Allen LaCour, Joseph P. Heindel, Teresa Head-Gordon. Predicting the Raman Spectra of Liquid Water with a Monomer-Field Model. The Journal of Physical Chemistry Letters 2023, 14 (51) , 11742-11749. https://doi.org/10.1021/acs.jpclett.3c02873
    2. Daniel Hutzler, Klara Stallhofer, Reinhard Kienberger, Eberhard Riedle, Hristo Iglev. Icelike Vibrational Properties of Strong Hydrogen Bonds in Hydrated Lithium Nitrate. The Journal of Physical Chemistry A 2020, 124 (28) , 5784-5789. https://doi.org/10.1021/acs.jpca.0c01588
    3. Bang Liang, Guangyu Zhang, Zhenxing Zhong, Yan Huang, Zhaohui Su. Superhydrophilic Anti-Icing Coatings Based on Polyzwitterion Brushes. Langmuir 2019, 35 (5) , 1294-1301. https://doi.org/10.1021/acs.langmuir.8b01009
    4. Daniel R. Moberg, Shelby C. Straight, Christopher Knight, and Francesco Paesani . Molecular Origin of the Vibrational Structure of Ice Ih. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2579-2583. https://doi.org/10.1021/acs.jpclett.7b01106
    5. Yuan Liu and Lars Ojamäe . Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods. The Journal of Physical Chemistry B 2016, 120 (42) , 11043-11051. https://doi.org/10.1021/acs.jpcb.6b07001
    6. L. Shi and J. L. Skinner . Proton Disorder in Ice Ih and Inhomogeneous Broadening in Two-Dimensional Infrared Spectroscopy. The Journal of Physical Chemistry B 2013, 117 (49) , 15536-15544. https://doi.org/10.1021/jp405860u
    7. S. M. Gruenbaum, C. J. Tainter, L. Shi, Y. Ni, and J. L. Skinner . Robustness of Frequency, Transition Dipole, and Coupling Maps for Water Vibrational Spectroscopy. Journal of Chemical Theory and Computation 2013, 9 (7) , 3109-3117. https://doi.org/10.1021/ct400292q
    8. Daiki Murakami, Motoyasu Kobayashi, Taro Moriwaki, Yuka Ikemoto, Hiroshi Jinnai, and Atsushi Takahara . Spreading and Structuring of Water on Superhydrophilic Polyelectrolyte Brush Surfaces. Langmuir 2013, 29 (4) , 1148-1151. https://doi.org/10.1021/la304697q
    9. Hanchao Liu, Yimin Wang, and Joel M. Bowman . Quantum Calculations of Intramolecular IR Spectra of Ice Models Using Ab Initio Potential and Dipole Moment Surfaces. The Journal of Physical Chemistry Letters 2012, 3 (24) , 3671-3676. https://doi.org/10.1021/jz3016777
    10. L. Shi, S. M. Gruenbaum, and J. L. Skinner . Interpretation of IR and Raman Line Shapes for H2O and D2O Ice Ih. The Journal of Physical Chemistry B 2012, 116 (47) , 13821-13830. https://doi.org/10.1021/jp3059239
    11. Mary Jane Shultz, Tuan Hoang Vu, Bryce Meyer, and Patrick Bisson . Water: A Responsive Small Molecule. Accounts of Chemical Research 2012, 45 (1) , 15-22. https://doi.org/10.1021/ar200064z
    12. Arkadiusz Jarota, Beata Brozek-Pluska, Wojciech Czajkowski, and Halina Abramczyk . Water Confined in Films of Sulphonated Phthalocyanines. The Journal of Physical Chemistry C 2011, 115 (50) , 24920-24930. https://doi.org/10.1021/jp208537c
    13. Irene Li Barnett, Henning Groenzin, and Mary Jane Shultz . Hydrogen Bonding in the Hexagonal Ice Surface. The Journal of Physical Chemistry A 2011, 115 (23) , 6039-6045. https://doi.org/10.1021/jp110431j
    14. Natalia Pérez-Hernández, Martín Febles, Cirilo Pérez, Johann Spandl, Julio D. Martín, and Hans-Heinrich Limbach . IR Studies of H/D Exchange of Water, Hydroxyl, and Carboxylic Groups Reveal Slowly Diffusing Lattice Defects in Sub-Nanometer Pores. The Journal of Physical Chemistry C 2011, 115 (19) , 9393-9402. https://doi.org/10.1021/jp112105j
    15. Daniel T. Hallinan, Jr., Maria Grazia De Angelis, Marco Giacinti Baschetti, Giulio C. Sarti and Yossef A. Elabd . Non-Fickian Diffusion of Water in Nafion. Macromolecules 2010, 43 (10) , 4667-4678. https://doi.org/10.1021/ma100047z
    16. B. M. Auer and J. L. Skinner. Vibrational Sum-Frequency Spectroscopy of the Water Liquid/Vapor Interface. The Journal of Physical Chemistry B 2009, 113 (13) , 4125-4130. https://doi.org/10.1021/jp806644x
    17. Hajime Torii. Time-Domain Calculations of the Polarized Raman Spectra, the Transient Infrared Absorption Anisotropy, and the Extent of Delocalization of the OH Stretching Mode of Liquid Water. The Journal of Physical Chemistry A 2006, 110 (30) , 9469-9477. https://doi.org/10.1021/jp062033s
    18. V. Buch. Molecular Structure and OH-Stretch Spectra of Liquid Water Surface. The Journal of Physical Chemistry B 2005, 109 (38) , 17771-17774. https://doi.org/10.1021/jp052819a
    19. Belén Maté,, Alicia Medialdea,, Miguel A. Moreno,, Rafael Escribano, and, Victor J. Herrero. Experimental Studies of Amorphous and Polycrystalline Ice Films Using FT-RAIRS. The Journal of Physical Chemistry B 2003, 107 (40) , 11098-11108. https://doi.org/10.1021/jp0344343
    20. R. F. Niedziela and, R. E. Miller, , D. R. Worsnop. Temperature- and Frequency-Dependent Optical Constants for Nitric Acid Dihydrate from Aerosol Spectroscopy. The Journal of Physical Chemistry A 1998, 102 (32) , 6477-6484. https://doi.org/10.1021/jp981299z
    21. Stephen Merriman, Saranshu Singla, Ali Dhinojwala. Switchable Slippery Surfaces Controlled by a Humidity‐Induced Glass Transition of Polyelectrolyte‐Grafted Brushes. Advanced Materials Interfaces 2024, 11 (13) https://doi.org/10.1002/admi.202400025
    22. Marek J. Wójcik, Mateusz Brela, Łukasz Boda, Marek Boczar, Takahito Nakajima. Dynamic Interactions Shaping Vibrational Spectra of Hydrogen‐Bonded Systems. 2023, 39-65. https://doi.org/10.1002/9783527834914.ch2
    23. Euihyun Lee, Carlos R. Baiz. How cryoprotectants work: hydrogen-bonding in low-temperature vitrified solutions. Chemical Science 2022, 13 (34) , 9980-9984. https://doi.org/10.1039/D2SC03188D
    24. Marco Cherubini, Lorenzo Monacelli, Francesco Mauri. The microscopic origin of the anomalous isotopic properties of ice relies on the strong quantum anharmonic regime of atomic vibration. The Journal of Chemical Physics 2021, 155 (18) https://doi.org/10.1063/5.0062689
    25. Paul Blaise, Olivier Henri‐Rousseau, Adina Velcescu. Quantum Approach of IR Line Shapes of Carboxylic Acids Using the Linear Response Theory. 2019, 199-214. https://doi.org/10.1002/9783527814596.ch7
    26. Xiao-Yang Yu, Xiao Zhang, Zhi-Gang Liu, Xiao-Bing Cui, Jia-Ning Xu, Yu-Hui Luo. Syntheses and structures of three supramolecular complexes based on 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid. Journal of Molecular Structure 2017, 1147 , 747-753. https://doi.org/10.1016/j.molstruc.2017.07.012
    27. Jesse Holmes, Michael Zerkle, David Heinrichs, , , , , , , , . Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment. EPJ Web of Conferences 2017, 146 , 13004. https://doi.org/10.1051/epjconf/201714613004
    28. Daiki Murakami, Motoyasu Kobayashi, Yuji Higaki, Hiroshi Jinnai, Atsushi Takahara. Swollen structure and electrostatic interactions of polyelectrolyte brush in aqueous solution. Polymer 2016, 98 , 464-469. https://doi.org/10.1016/j.polymer.2016.04.041
    29. Marek Janusz Wójcik. Theoretical Modeling of Vibrational Spectra and Proton Tunneling in Hydrogen‐Bonded Systems. 2016, 307-342. https://doi.org/10.1002/9781119165156.ch6
    30. Andy Wong, Liang Shi, Rebecca Auchettl, Don McNaughton, Dominique R. T. Appadoo, Evan G. Robertson. Heavy snow: IR spectroscopy of isotope mixed crystalline water ice. Physical Chemistry Chemical Physics 2016, 18 (6) , 4978-4993. https://doi.org/10.1039/C5CP06756A
    31. Liang Shi, J. L. Skinner, Thomas L. C. Jansen. Two-dimensional infrared spectroscopy of neat ice I h. Physical Chemistry Chemical Physics 2016, 18 (5) , 3772-3779. https://doi.org/10.1039/C5CP07264F
    32. Marc Benjamin Hahn, Frank Uhlig, Tihomir Solomun, Jens Smiatek, Heinz Sturm. Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects on aqueous solutions. Physical Chemistry Chemical Physics 2016, 18 (41) , 28398-28402. https://doi.org/10.1039/C6CP05417J
    33. Maciej Gług, Marek Boczar, Łukasz Boda, Marek J. Wójcik. Analysis of librational modes of ice XI studied by Car–Parrinello molecular dynamics. Chemical Physics 2015, 459 , 102-111. https://doi.org/10.1016/j.chemphys.2015.08.004
    34. Hanchao Liu, Yimin Wang, Joel M. Bowman. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment. The Journal of Chemical Physics 2015, 142 (19) https://doi.org/10.1063/1.4921045
    35. Marek J. Wójcik, Maciej Gług, Marek Boczar, Łukasz Boda. Spectroscopic signature for ferroelectric ice. Chemical Physics Letters 2014, 612 , 162-166. https://doi.org/10.1016/j.cplett.2014.08.018
    36. C. J. Tainter, L. Shi, J. L. Skinner. Structure and OH-stretch spectroscopy of low- and high-density amorphous ices. The Journal of Chemical Physics 2014, 140 (13) https://doi.org/10.1063/1.4869293
    37. Jun-Ho Choi, Minhaeng Cho. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants. The Journal of Chemical Physics 2013, 138 (17) https://doi.org/10.1063/1.4802991
    38. Phillip L. Geissler. Water Interfaces, Solvation, and Spectroscopy. Annual Review of Physical Chemistry 2013, 64 (1) , 317-337. https://doi.org/10.1146/annurev-physchem-040412-110153
    39. Xiao He, Olaseni Sode, Sotiris S. Xantheas, So Hirata. Second-order many-body perturbation study of ice Ih. The Journal of Chemical Physics 2012, 137 (20) https://doi.org/10.1063/1.4767898
    40. Takeshi Shigenari, Kohji Abe. Vibrational modes of hydrogens in the proton ordered phase XI of ice: Raman spectra above 400 cm−1. The Journal of Chemical Physics 2012, 136 (17) https://doi.org/10.1063/1.3702595
    41. Fivos Perakis, Peter Hamm. Two-dimensional infrared spectroscopy of neat ice Ih. Physical Chemistry Chemical Physics 2012, 14 (18) , 6250. https://doi.org/10.1039/c2cp23710e
    42. Yuehua Xu, San-Huang Ke. First-principles study on the infrared spectra of ice nanotubes. Physica E: Low-dimensional Systems and Nanostructures 2011, 44 (2) , 350-355. https://doi.org/10.1016/j.physe.2011.08.026
    43. F. Li, J. L. Skinner. Infrared and Raman line shapes for ice Ih. II. H2O and D2O. The Journal of Chemical Physics 2010, 133 (24) https://doi.org/10.1063/1.3516460
    44. Qin Hou, Jia-Ning Xu, Jie-Hui Yu, Tie-Gang Wang, Qing-Feng Yang, Ji-Qing Xu. Synthesis and structural characterization of three copper coordination polymers with pyridine derivatives from hydro(solvo)thermal in situ decarboxylation reactions of 2,5-dicarboxylpyridine. Journal of Solid State Chemistry 2010, 183 (7) , 1561-1566. https://doi.org/10.1016/j.jssc.2010.04.033
    45. Mino Yang, J. L. Skinner. Signatures of coherent vibrational energy transfer in IR and Raman line shapes for liquid water. Phys. Chem. Chem. Phys. 2010, 12 (4) , 982-991. https://doi.org/10.1039/B918314K
    46. Qiang Sun, Haifei Zheng. Raman OH stretching vibration of ice Ih. Progress in Natural Science 2009, 19 (11) , 1651-1654. https://doi.org/10.1016/j.pnsc.2009.06.010
    47. Y.-S. Lin, B. M. Auer, J. L. Skinner. Water structure, dynamics, and vibrational spectroscopy in sodium bromide solutions. The Journal of Chemical Physics 2009, 131 (14) https://doi.org/10.1063/1.3242083
    48. Julian Riemenschneider, Alexander Wulf, Ralf Ludwig. The Effects of Temperature and H/D Isotopic Dilution on the Transmission and Attenuated Total Reflection FTIR Spectra of Water. Zeitschrift für Physikalische Chemie 2009, 223 (9) , 1011-1022. https://doi.org/10.1524/zpch.2009.6067
    49. James L. Skinner, Benjamin M. Auer, Yu‐Shan Lin. Vibrational Line Shapes, Spectral Diffusion, and Hydrogen Bonding in Liquid Water. 2009, 59-103. https://doi.org/10.1002/9780470475935.ch2
    50. B.M. Auer, J.L. Skinner. Water: Hydrogen bonding and vibrational spectroscopy, in the bulk liquid and at the liquid/vapor interface. Chemical Physics Letters 2009, 470 (1-3) , 13-20. https://doi.org/10.1016/j.cplett.2009.01.010
    51. B. M. Auer, J. L. Skinner. Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in D2O. The Journal of Chemical Physics 2008, 129 (21) https://doi.org/10.1063/1.3012568
    52. B. M. Auer, J. L. Skinner. IR and Raman spectra of liquid water: Theory and interpretation. The Journal of Chemical Physics 2008, 128 (22) https://doi.org/10.1063/1.2925258
    53. Wei Chen, Manu Sharma, Raffaele Resta, Giulia Galli, Roberto Car. Role of dipolar correlations in the infrared spectra of water and ice. Physical Review B 2008, 77 (24) https://doi.org/10.1103/PhysRevB.77.245114
    54. Henning Groenzin, Irene Li, Victoria Buch, Mary Jane Shultz. The single-crystal, basal face of ice Ih investigated with sum frequency generation. The Journal of Chemical Physics 2007, 127 (21) https://doi.org/10.1063/1.2801642
    55. V. Buch, T. Tarbuck, G. L. Richmond, H. Groenzin, I. Li, M. J. Shultz. Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. The Journal of Chemical Physics 2007, 127 (20) https://doi.org/10.1063/1.2790437
    56. Robert A. McClelland, Al Postigo. Solvent effects on the reactivity of fluorenyl nitrenium ion with DNA-like probes. Biophysical Chemistry 2006, 119 (3) , 213-218. https://doi.org/10.1016/j.bpc.2005.09.014
    57. C. J. Burnham, G. F. Reiter, J. Mayers, T. Abdul-Redah, H. Reichert, H. Dosch. On the origin of the redshift of the OH stretch in Ice Ih: evidence from the momentum distribution of the protons and the infrared spectral density. Physical Chemistry Chemical Physics 2006, 8 (34) , 3966. https://doi.org/10.1039/b605410b
    58. Arnon Millo, Yosef Raichlin, Abraham Katzir. Mid-Infrared Fiber-Optic Attenuated Total Reflection Spectroscopy of the Solid—Liquid Phase Transition of Water. Applied Spectroscopy 2005, 59 (4) , 460-466. https://doi.org/10.1366/0003702053641469
    59. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, R. J. D. Miller. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 2005, 434 (7030) , 199-202. https://doi.org/10.1038/nature03383
    60. Victoria Buch *, Bauerecker Sigurd, J. Paul Devlin, Udo Buck, Jan K. Kazimirski. Solid water clusters in the size range of tens–thousands of H 2 O: a combined computational/spectroscopic outlook. International Reviews in Physical Chemistry 2004, 23 (3) , 375-433. https://doi.org/10.1080/01442350412331316124
    61. J. Paul Devlin, Victoria Buch. Ice Nanoparticles and Ice Adsorbate Interactions: FTIR Spectroscopy and Computer Simulations. 2003, 425-462. https://doi.org/10.1007/978-3-662-05231-0_18
    62. George E. Ewing, Michelle Foster, Will Cantrell, Vlad Sadtchenko. Thin Film Water on Insulator Surfaces. 2003, 179-211. https://doi.org/10.1007/978-3-662-05231-0_9
    63. Marek J. Wójcik, Krzysztof Szczeponek, Susumu Ikeda. Theoretical study of the OH/OD stretching regions of the vibrational spectra of ice Ih. The Journal of Chemical Physics 2002, 117 (21) , 9850-9857. https://doi.org/10.1063/1.1517608
    64. Vlad Sadtchenko, George E. Ewing. Interfacial melting of thin ice films: An infrared study. The Journal of Chemical Physics 2002, 116 (11) , 4686-4697. https://doi.org/10.1063/1.1449947
    65. S. Bratos, J.-Cl. Leicknam, G. Gallot, H. Ratajczak. Infra-Red Spectra of Hydrogen Bonded Systems: Theory and Experiment. 2002, 5-30. https://doi.org/10.1007/978-94-017-0059-7_2
    66. J. Paul Devlin. Structure, spectra, and mobility of low‐pressure ices: Ice I, amorphous solid water, and clathrate hydrates at T < 150 K. Journal of Geophysical Research: Planets 2001, 106 (E12) , 33333-33349. https://doi.org/10.1029/2000JE001301
    67. Nevin Uras-Aytemiz, Charles Joyce, J. Paul Devlin. Protonic and Bjerrum defect activity near the surface of ice at T<145 K. The Journal of Chemical Physics 2001, 115 (21) , 9835-9842. https://doi.org/10.1063/1.1414315
    68. V. Buch, J. P. Devlin. A new interpretation of the OH-stretch spectrum of ice. The Journal of Chemical Physics 1999, 110 (7) , 3437-3443. https://doi.org/10.1063/1.478210
    69. Olivier Henri‐Rousseau, Paul Blaise. The Infrared Spectral Density of Weak Hydrogen Bonds within the Linear Response Theory. 1998, 1-186. https://doi.org/10.1002/9780470141625.ch1
    70. Isak Engquist, Ingemar Lundström, Bo Liedberg, Atul N. Parikh, David L. Allara. Infrared characterization of amorphous and polycrystalline D2O ice on controlled wettability self-assembled alkanethiolate monolayers. The Journal of Chemical Physics 1997, 106 (8) , 3038-3048. https://doi.org/10.1063/1.473049
    71. J. P. Devlin, V. Buch. FT-IR Spectra of Nanoparticles: Surface and Adsorbate Modes. 1997, 57-66. https://doi.org/10.1007/978-3-7091-6840-0_8
    72. Jichen Li. Inelastic neutron scattering studies of hydrogen bonding in ices. The Journal of Chemical Physics 1996, 105 (16) , 6733-6755. https://doi.org/10.1063/1.472525
    73. B. Rowland, N. S. Kadagathur, J. P. Devlin, V. Buch, Tova Feldman, M. J. Wojcik. Infrared spectra of ice surfaces and assignment of surface-localized modes from simulated spectra of cubic ice. The Journal of Chemical Physics 1995, 102 (21) , 8328-8341. https://doi.org/10.1063/1.468825
    74. J -C Li, D K Ross. Inelastic neutron scattering studies of defect modes of H in D 2 O ice Ih. Journal of Physics: Condensed Matter 1994, 6 (49) , 10823-10837. https://doi.org/10.1088/0953-8984/6/49/023
    75. M. Diraison, J-Cl. Leicknam, G. Tarjus, S. Bratos. Computer simulation study of inelastic neutron scattering from liquid water. Physical Review E 1994, 50 (4) , 2689-2695. https://doi.org/10.1103/PhysRevE.50.2689
    76. M. J. Wojcik, V. Buch, J. P. Devlin. Spectra of isotopic ice mixtures. The Journal of Chemical Physics 1993, 99 (4) , 2332-2344. https://doi.org/10.1063/1.465248
    77. Lars Ojamäe, Jörgen Tegenfeldt, Jan Lindgren, Kersti Hermansson. Simulation of band widths in liquid water spectra. The breakdown of the frozen-field approximation. Chemical Physics Letters 1992, 195 (1) , 97-103. https://doi.org/10.1016/0009-2614(92)85916-X
    78. S. Bratos, H. Ratajczak, P. Viot. Properties of H-Bonding in the Infrared Spectral Range. 1991, 221-235. https://doi.org/10.1007/978-94-011-3274-9_18
    79. J.Paul Devlin. Vibrational modes of amorphous ice: bending mode frequencies for isotopically decoupled H2O and HOD at 90 K. Journal of Molecular Structure 1990, 224 , 33-43. https://doi.org/10.1016/0022-2860(90)87005-I
    80. J. Paul Devlin. Vibrational spectra and point defect activities of icy solids and gas phase clusters. International Reviews in Physical Chemistry 1990, 9 (1) , 29-65. https://doi.org/10.1080/01442359009353237
    81. B. Gellai. A local mode analysis of the stretching mode spectra of liquid H2O and D2O in the temperature range 4 ⪢2- 200 °C. Journal of Molecular Liquids 1989, 40 (4) , 305-326. https://doi.org/10.1016/0167-7322(89)80063-7
    82. J. Paul Devlin. Polarized Raman spectra for the full range of isotopic dilution for ice Ic and amorphous ice: Mixtures of intact H2O and D2O. The Journal of Chemical Physics 1989, 90 (3) , 1322-1329. https://doi.org/10.1063/1.456127
    83. Marek J. Wójcik. Intermolecular interactions in water. Journal of Molecular Structure 1988, 189 (1-2) , 89-103. https://doi.org/10.1016/0022-2860(88)80215-1
    84. Alan C. Belch, Stuart A. Rice. The distribution of rings of hydrogen-bonded molecules in a model of liquid water. The Journal of Chemical Physics 1987, 86 (10) , 5676-5682. https://doi.org/10.1063/1.452545
    85. R. Bansil, T. Berger, K. Toukan, M.A. Ricci, S.H. Chen. A molecular dynamics study of the OH stretching vibrational spectrum of liquid water. Chemical Physics Letters 1986, 132 (2) , 165-172. https://doi.org/10.1016/0009-2614(86)80101-4
    86. Eugene S. Kryachko. On the red shift of OH stretching region vibrations in ice and water. International Journal of Quantum Chemistry 1986, 30 (4) , 495-508. https://doi.org/10.1002/qua.560300405
    87. J. Paul Devlin, Paul J. Wooldridge, Gary Ritzhaupt. Decoupled isotopomer vibrational frequencies in cubic ice: A simple unified view of the Fermi diads of decoupled H2O, HOD, and D2O. The Journal of Chemical Physics 1986, 84 (11) , 6095-6100. https://doi.org/10.1063/1.450799
    88. W.F. Kuhs. [22] Methods for the study of water in ice phases. 1986, 303-318. https://doi.org/10.1016/0076-6879(86)27025-1

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1983, 87, 21, 4295–4308
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100244a061
    Published October 1, 1983

    Article Views

    459

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.